Quantum Phase Transitions

Chapter 2: Exercises

1. Consider the infinite classical Ising chain with first and second neighbor exchange $\left(K_{1}>0, K_{2}>0\right)$:

$$
\begin{equation*}
H=-\sum_{i}\left(K_{1} \sigma_{i}^{z} \sigma_{i+1}^{z}+K_{2} \sigma_{i}^{z} \sigma_{i+2}^{z}\right) \tag{1}
\end{equation*}
$$

(a) Let Δ be the energy cost to create a domain wall between a state with all spins up and a state with all spins down. Find the value of Δ.
(b) Write down the partition function for H as a transfer matrix product. The transfer matrix will be 4×4 and "transfers" the spin configuration by 2 sites. Alternatively, think of it in terms of a model of "superspins" with 4 states, with each superspin representing the states of a pair of nearest neighbor Ising spins.
(c) Determine the correlation length, ξ, of H in the limit of large K_{1}, K_{2} : show that $\xi=(a / 2) e^{\Delta}$.
(d) We will now show that the relationship $\xi=(a / 2) e^{\Delta}$ holds quite generally. First argue that for large Δ, the density of domain walls, ρ, is $\rho=(1 / a) e^{-\Delta}$. So we need to establish that $\xi=1 /(2 \rho)$. Assume that the positions of the domain walls are statistically uncorrelated from each other. Consider a long chain of length $L \gg \xi$ with $M=\rho L$ domain walls in it. The probability that any given domain wall is between positions 0 and $x>0$ is $q=x / L$. Now use the statistical independence of the domain wall positions to argue that

$$
\begin{equation*}
\left\langle\sigma_{0}^{z} \sigma_{x}^{z}\right\rangle=\sum_{j=0}^{M}(-1)^{j} q^{j}(1-q)^{M-j} \frac{M!}{j!(M-j)!} \tag{2}
\end{equation*}
$$

Evaluate the above in the limit $M, L \rightarrow \infty, \rho=M / L$ fixed, to establish the desired result.
2. The Poisson summation formula. Consider the function

$$
\begin{equation*}
f(x)=\sum_{m=-\infty}^{\infty} \delta(x-m) \tag{3}
\end{equation*}
$$

This is clearly a periodic function of x with period 1 . Restrict the function to the fundamental domain $|x|<1 / 2$. We can write $f(x)$ in a Fourier series expansion

$$
\begin{equation*}
f(x)=\sum_{\omega_{n}} e^{i \omega_{n} x} F\left(\omega_{n}\right) \tag{4}
\end{equation*}
$$

where $\omega_{n}=2 \pi n$, and

$$
\begin{equation*}
F\left(\omega_{n}\right)=\int_{-1 / 2}^{1 / 2} d x f(x) e^{-i \omega_{n} x} \tag{5}
\end{equation*}
$$

In this manner, establish the Poisson summation formula

$$
\begin{equation*}
\sum_{m=-\infty}^{\infty} \delta(x-m)=\sum_{n=-\infty}^{\infty} e^{2 \pi i n x} \tag{6}
\end{equation*}
$$

Apply this formula to (2.53) by writing

$$
\begin{equation*}
A(y)=\int_{-\infty}^{\infty} d x f(x) e^{-\pi x^{2} y} \tag{7}
\end{equation*}
$$

Now prove (2.65).

