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Chapter 2: FEzercises

1. Consider the infinite classical Ising chain with first and second neighbor exchange
(Kl > 0, Ky > 0)
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(a) Let A be the energy cost to create a domain wall between a state with all spins

up and a state with all spins down. Find the value of A.

(b) Write down the partition function for H as a transfer matrix product. The transfer
matrix will be 4 x4 and “transfers” the spin configuration by 2 sites. Alternatively,
think of it in terms of a model of “superspins” with 4 states, with each superspin

representing the states of a pair of nearest neighbor Ising spins.

(c) Determine the correlation length, &, of H in the limit of large K, K5: show that
€ = (a/2)e”.

(d) We will now show that the relationship & = (a/2)e® holds quite generally. First
argue that for large A, the density of domain walls, p, is p = (1/a)e™®. So we need
to establish that & = 1/(2p). Assume that the positions of the domain walls are
statistically uncorrelated from each other. Consider a long chain of length L > ¢
with M = pL domain walls in it. The probability that any given domain wall is
between positions 0 and = > 0 is ¢ = x/L. Now use the statistical independence

of the domain wall positions to argue that
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Evaluate the above in the limit M, L — oo, p = M/L fixed, to establish the

desired result.

2. The Poisson summation formula. Consider the function
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This is clearly a periodic function of x with period 1. Restrict the function to the

fundamental domain |z| < 1/2. We can write f(z) in a Fourier series expansion

fla) =3 " " F(wy) (4)

where w,, = 27n, and
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In this manner, establish the Poisson summation formula
Yo d—m)= Y & (6)

Apply this formula to (2.53) by writing
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Now prove (2.65).



