Quantum Phase Transitions

Subir Sachdev; email: subir.sachdev@yale.edu
Chapter 4: Exercises

1. Fluctuation dissipation theorem. We showed in class that the spin correlation function of the classical $D=2$ Ising model was simply related to the response function

$$
\begin{equation*}
\chi_{i j}\left(\omega_{n}\right)=\int_{0}^{1 / T} d \tau e^{i \omega_{n} \tau}\left\langle\hat{\sigma}_{i}^{z}(\tau) \hat{\sigma}_{j}^{z}(0)\right\rangle \tag{1}
\end{equation*}
$$

where $\omega_{n}=2 \pi n T$. Evaluate this correlation function in terms of the exact eigenstates of $H_{I}, H_{I}|m\rangle=E_{m}|m\rangle$. By inserting the completeness identity, $1=\sum_{m}|m\rangle\langle m|$ around the $\hat{\sigma}^{z}$ operators, show that

$$
\begin{equation*}
\chi_{i j}\left(\omega_{n}\right)=\frac{1}{Z} \sum_{m, m^{\prime}}\left\langle m^{\prime}\right| \hat{\sigma}_{i}^{z}|m\rangle\langle m| \hat{\sigma}_{j}^{z}\left|m^{\prime}\right\rangle \frac{e^{-E_{m} / T}-e^{-E_{m^{\prime}} / T}}{i \omega_{n}-E_{m}+E_{m^{\prime}}} \tag{2}
\end{equation*}
$$

where $Z=\sum_{m} e^{-E_{m} / T}$ is the partition function. Hence show that

$$
\begin{equation*}
\chi_{i j}\left(\omega_{n}\right)=\int_{-\infty}^{\infty} \frac{d \Omega}{\pi} \frac{\rho_{i j}(\Omega)}{\Omega-i \omega_{n}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{i j}(\Omega)=\frac{\pi}{Z} \sum_{m, m^{\prime}}\left\langle m^{\prime}\right| \hat{\sigma}_{i}^{z}|m\rangle\langle m| \hat{\sigma}_{j}^{z}\left|m^{\prime}\right\rangle\left(e^{-E_{m^{\prime}} / T}-e^{-E_{m} / T}\right) \delta\left(\Omega-E_{m}+E_{m^{\prime}}\right) \tag{4}
\end{equation*}
$$

Similarly, express the dynamic structure factor

$$
\begin{equation*}
S_{i j}(\omega)=\int_{-\infty}^{\infty} d t e^{i \omega t}\left\langle\hat{\sigma}_{i}^{z}(t) \hat{\sigma}_{j}^{z}(0)\right\rangle \tag{5}
\end{equation*}
$$

in terms of exact eigenstates and show that

$$
\begin{equation*}
S_{i j}(\omega)=\frac{2}{1-e^{-\omega / T}} \rho_{i j}(\omega) \tag{6}
\end{equation*}
$$

2. Linear response theory. Consider the response of the system described by H_{I} to a time-dependent external magnetic field $h_{i}(t)$ under which

$$
\begin{equation*}
H_{I} \rightarrow H_{I}-\sum_{i} h_{i}(t) \hat{\sigma}_{i}^{z} \tag{7}
\end{equation*}
$$

As shown in practically any text book on many body theory (e.g. Fetter and Walecka), we can obtain the linear response to this external perturbation simply by integrating the Schroedinger equation order by order in h_{i}. To first order in h_{i}, the result is

$$
\begin{equation*}
\delta\left\langle\hat{\sigma}_{i}^{z}\right\rangle(t)=\sum_{j} \int_{-\infty}^{\infty} d t^{\prime} \chi_{i j}\left(t-t^{\prime}\right) h_{j}\left(t^{\prime}\right) \tag{8}
\end{equation*}
$$

where the initial δ indicates 'change due to external field' and

$$
\begin{equation*}
\chi_{i j}\left(t-t^{\prime}\right)=i \theta\left(t-t^{\prime}\right)\left\langle\left[\hat{\sigma}_{i}^{z}(t), \hat{\sigma}_{j}^{z}\left(t^{\prime}\right)\right]\right\rangle . \tag{9}
\end{equation*}
$$

Now θ is a step function which imposes causality, and $[\cdot, \cdot]$ represents the commutator of operators in the Heisenberg representation. Again after inserting complete sets of exact eigenstates, show that the Fourier transform of $\chi_{i j}$

$$
\begin{equation*}
\chi_{i j}(\omega)=\int_{-\infty}^{\infty} d t e^{i \omega t} \chi_{i j}(t) \tag{10}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
\chi_{i j}(\omega)=\int_{-\infty}^{\infty} \frac{d \Omega}{\pi} \frac{\rho_{i j}(\Omega)}{\Omega-\omega-i \eta} \tag{11}
\end{equation*}
$$

where η is a positive infinitesimal. So $\chi_{i j}(\omega)$ is obtained from $\chi_{i j}\left(\omega_{n}\right)$ by analytically continuing the latter from the imaginary frequency axes to points just above the real frequency axis.
3. This problem considers various properties of the Ising chain in a transverse field in
(a) First, consider the limit $g \ll 1$. Write down the ground state wavefunction, with the spins mostly up, correct to first order in g.
(b) Use this wavefunction to compute $N_{0}=\left\langle\hat{\sigma}^{z}\right\rangle$ to second order in g. Don't forget to properly normalize the wavefunction. It is useful to carry out the computation for M sites with periodic boundary conditions; intermediate steps will include factors of M, but all M dependence should cancel out in the final answer.
(c) With the dispersion relation (4.22), compute the range of energies, as a function of total momentum, over which the two-particle continuum exists
(d) Now consider the opposite limit of $g \gg 1$. Here we will use the exact solution obtained by the Jordan Wigner transformation. The ground state $|G\rangle$ satisfies $\gamma_{k}|G\rangle=0$ and the state with a single quasiparticle is $|k\rangle=\gamma_{k}^{\dagger}|G\rangle$. The weight of the delta function peak in the dynamic structure factor is determined by the quasiparticle residue $Z=e^{-i k r_{i}}\langle G| \hat{\sigma}_{i}^{z}|k\rangle$. Because of the non-locality of the relationship (4.29) this matrix element is very difficult to evaluate. However, simplifications do occur in the large g limit, where notice from (4.36) that $v_{k} \rightarrow 0$. As a result,
the number of c_{k} fermions in the wavefunctions is small. Use such a method to compute Z to order $1 / g^{2}$.
4. Provide the missing steps leading to the results (4.61) and (4.62).
5. Generalize (4.1) to include also a second-neighbor exchange $-J_{2} \sum_{i} \hat{\sigma}_{i}^{z} \hat{\sigma}_{i+2}^{z}$. Determine the dispersion spectrum of the domain wall excitation to lowest order in g. Also consider the limit of large g, and determine the dispersion spectrum of a 'flipped-spin' excitation.
6. We will consider the splitting of the degeneracy in the two-particle subspace defined by the states in (4.15) to first order in $1 / g$. Let us write an arbitrary eigenstate, $|\alpha\rangle$ (with energy E_{α}) in this subspace in the form

$$
\begin{equation*}
|\alpha\rangle=\sum_{i>j} \Psi_{\alpha}(i, j)|i, j\rangle \tag{12}
\end{equation*}
$$

Actually by double-counting, we can rewrite the above as

$$
\begin{equation*}
|\alpha\rangle=\sum_{i, j} \Psi_{\alpha}(i, j)|i, j\rangle \tag{13}
\end{equation*}
$$

where we define $\Psi_{\alpha}(i, j)=\Psi_{\alpha}(j, i)$ and $\Psi_{\alpha}(i, i)=0$. So we can view Ψ_{α} as the wavefunction of two bosons hopping on the lattice with a hard core repulsion. For the model H_{I} (no second neighbor exchange), and to first order in $1 / g$, obtain the Schroedinger equation satisfied by $\Psi_{\alpha}(i, j)$. The translational invariance of the problem implies that we can quite generally write down $\Psi_{\alpha}(i, j)$ in the form

$$
\begin{equation*}
\Psi_{\alpha}(i, j)=e^{i K\left(x_{i}+x_{j}\right)} \psi_{\alpha}(i-j) \tag{14}
\end{equation*}
$$

where K is the center of mass momentum and $\psi_{\alpha}(i)=\psi_{\alpha}(-i)$ is the relative wavefunction with $\psi_{\alpha}(0)=0$. Obtain the Schroedinger equation obeyed by $\psi_{\alpha}(i)$. Show that this equation has the very simple solution $\psi_{\alpha}(i)=\sin (k|i|)$. By inserting this solution back in $(13,14)$ establish (4.17).

