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Chapter 4: Exercises

1. Fluctuation dissipation theorem. We showed in class that the spin correlation

function of the classical D = 2 Ising model was simply related to the response function

χij(ωn) =
∫ 1/T

0
dτeiωnτ 〈σ̂z

i (τ)σ̂
z
j (0)〉 (1)

where ωn = 2πnT . Evaluate this correlation function in terms of the exact eigenstates

ofHI , HI |m〉 = Em|m〉. By inserting the completeness identity, 1 =
∑

m |m〉〈m| around

the σ̂z operators, show that

χij(ωn) =
1

Z

∑
m,m′

〈m′|σ̂z
i |m〉〈m|σ̂z

j |m′〉e
−Em/T − e−Em′/T

iωn − Em + Em′
(2)

where Z =
∑

m e
−Em/T is the partition function. Hence show that

χij(ωn) =
∫ ∞

−∞

dΩ

π

ρij(Ω)

Ω− iωn

(3)

where

ρij(Ω) =
π

Z

∑
m,m′

〈m′|σ̂z
i |m〉〈m|σ̂z

j |m′〉(e−Em′/T − e−Em/T )δ(Ω− Em + Em′) (4)

Similarly, express the dynamic structure factor

Sij(ω) =
∫ ∞

−∞
dteiωt〈σ̂z

i (t)σ̂
z
j (0)〉 (5)

in terms of exact eigenstates and show that

Sij(ω) =
2

1− e−ω/T
ρij(ω) (6)

2. Linear response theory. Consider the response of the system described by HI to a

time-dependent external magnetic field hi(t) under which

HI → HI −
∑

i

hi(t)σ̂
z
i (7)

As shown in practically any text book on many body theory (e.g. Fetter and Walecka),

we can obtain the linear response to this external perturbation simply by integrating

the Schroedinger equation order by order in hi. To first order in hi, the result is

δ〈σ̂z
i 〉(t) =

∑
j

∫ ∞

−∞
dt′χij(t− t′)hj(t

′) (8)
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where the initial δ indicates ‘change due to external field’ and

χij(t− t′) = iθ(t− t′)〈[σ̂z
i (t), σ̂

z
j (t

′)]〉. (9)

Now θ is a step function which imposes causality, and [·, ·] represents the commutator

of operators in the Heisenberg representation. Again after inserting complete sets of

exact eigenstates, show that the Fourier transform of χij

χij(ω) =
∫ ∞

−∞
dteiωtχij(t) (10)

can be written as

χij(ω) =
∫ ∞

−∞

dΩ

π

ρij(Ω)

Ω− ω − iη
(11)

where η is a positive infinitesimal. So χij(ω) is obtained from χij(ωn) by analytically

continuing the latter from the imaginary frequency axes to points just above the real

frequency axis.

3. This problem considers various properties of the Ising chain in a transverse field in

(4.1)

(a) First, consider the limit g � 1. Write down the ground state wavefunction, with

the spins mostly up, correct to first order in g.

(b) Use this wavefunction to compute N0 = 〈σ̂z〉 to second order in g. Don’t forget

to properly normalize the wavefunction. It is useful to carry out the computation

for M sites with periodic boundary conditions; intermediate steps will include

factors of M , but all M dependence should cancel out in the final answer.

(c) With the dispersion relation (4.22), compute the range of energies, as a function

of total momentum, over which the two-particle continuum exists

(d) Now consider the opposite limit of g � 1. Here we will use the exact solution

obtained by the Jordan Wigner transformation. The ground state |G〉 satisfies

γk|G〉 = 0 and the state with a single quasiparticle is |k〉 = γ†k|G〉. The weight of

the delta function peak in the dynamic structure factor is determined by the quasi-

particle residue Z = e−ikri〈G|σ̂z
i |k〉. Because of the non-locality of the relationship

(4.29) this matrix element is very difficult to evaluate. However, simplifications

do occur in the large g limit, where notice from (4.36) that vk → 0. As a result,
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the number of ck fermions in the wavefunctions is small. Use such a method to

compute Z to order 1/g2.

4. Provide the missing steps leading to the results (4.61) and (4.62).

5. Generalize (4.1) to include also a second-neighbor exchange −J2
∑

i σ̂
z
i σ̂

z
i+2. Determine

the dispersion spectrum of the domain wall excitation to lowest order in g. Also

consider the limit of large g, and determine the dispersion spectrum of a ‘flipped-spin’

excitation.

6. We will consider the splitting of the degeneracy in the two-particle subspace defined

by the states in (4.15) to first order in 1/g. Let us write an arbitrary eigenstate, |α〉
(with energy Eα) in this subspace in the form

|α〉 =
∑
i>j

Ψα(i, j)|i, j〉 (12)

Actually by double-counting, we can rewrite the above as

|α〉 =
∑
i,j

Ψα(i, j)|i, j〉 (13)

where we define Ψα(i, j) = Ψα(j, i) and Ψα(i, i) = 0. So we can view Ψα as the

wavefunction of two bosons hopping on the lattice with a hard core repulsion. For

the model HI (no second neighbor exchange), and to first order in 1/g, obtain the

Schroedinger equation satisfied by Ψα(i, j). The translational invariance of the problem

implies that we can quite generally write down Ψα(i, j) in the form

Ψα(i, j) = eiK(xi+xj)ψα(i− j) (14)

where K is the center of mass momentum and ψα(i) = ψα(−i) is the relative wavefunc-

tion with ψα(0) = 0. Obtain the Schroedinger equation obeyed by ψα(i). Show that

this equation has the very simple solution ψα(i) = sin(k|i|). By inserting this solution

back in (13,14) establish (4.17).

3


