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Chapter 8: Exercises

The problems below refer to the φ4 field theory, defined by the partition function (α =

1 . . . N).
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1. In the paramagnetic phase, rotational invariance implies that we can write for the

susceptibility, χ(q)δαβ = 〈φα(q)φα(−q)〉, where q is a D-dimensional spacetime mo-

mentum. Also, Dyson’s equation has the form χ−1(q) = q2 + r − Σ(q). Obtain the

perturbative expansion for Σ(q) to order u2. Leave the result in the form of integrals

over momenta.

2. Another useful identity in the theory of Gaussian integrals is
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where M is a real, symmetric, positive-definite matrix (i.e. all eigenvalues are positive).

This identity can be easily established by changing variables of integration to a basis in

which M is diagonal. We will use this identity to compute the free energy density F ,

defined by Z = exp(−V F ) where V is the volume of spacetime. In the paramagnetic

phase, r > 0, the perturbative expansion for F takes the form F = C1 + C2u +

O(u2) + . . ., while in the magnetically ordered phase, r < 0, it takes the form F =

C3/u + C4 +O(u). Obtain expressions for C1−4. Assume we have normalized the Dφα

in Z to absorb the factor of 1/
√

π in (2).

3. This is adapted from Problem (6.5a-c) in Plischke and Bergersen to the notation we

are using. You may follow their approach if you wish. We consider the consequences

of anisotropy in the O(N) symmetry of L. In some applications to classical ferromag-

nets and quantum antiferromagnets (which correspond to the case N = 3), spin-orbit

interactions may introduce a weak anisotropy in which the rφ2
α term in L is replaced
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while the quartic term is replaced by
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Clearly, the original problem with full O(N) symmetry is the case rs = rn and u1 =

u2 = u3. The model with rs = ∞, u1 = u2 = 0 is the field theory of the Ising model,

while the model with O(N − 1) symmetry is rn = ∞, u2 = u3 = 0.

(a) Show that the one-loop RG flow equations for this model are:

drs

d`
= 2rs +

(N + 1)

6(1 + rs)
Ku1 +

1

6(1 + rn)
Ku2

drn

d`
= 2rn +

(N − 1)

6(1 + rs)
Ku2 +

1

2(1 + rn)
Ku3

du1

d`
= εu1 −

(N + 7)

6(1 + rs)2
Ku2

1 −
1

6(1 + rn)2
Ku2

2

du2

d`
= εu2 −

2

3(1 + rs)(1 + rn)
Ku2

2 −
(N + 1)

6(1 + rs)2
Ku1u2 −

1

2(1 + rn)2
Ku2u3

du3

d`
= εu3 −

3

2(1 + rn)2
Ku2

3 −
(N − 1)

6(1 + rs)2
Ku2

2, (5)

where K is the phase space factor discussed in class.

(b) Show that these equations reduce to the expected equations in the limits corre-

sponding to the models with O(N), Ising, and O(N − 1) symmetry just noted.

(c) Consider the fixed point of the flow equations with O(N) symmetry: rs = rn = r∗,

and u1 = u2 = u3 = u∗. Show that, to leading order in ε, this fixed point has two

relevant eigenvalues 2−(N +2)ε/(N +8) and 2−2ε/(N +8) (see Plischke and Bergersen

for some calculational hints).
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