Quantum Phase Transitions

Subir Sachdev; email: subir.sachdev@yale.edu
Chapter 8: Exercises

The problems below refer to the ϕ^{4} field theory, defined by the partition function ($\alpha=$ $1 \ldots N)$.

$$
\begin{align*}
Z & =\int \mathcal{D} \phi_{\alpha}(x) \exp \left(-\int d^{D} x \mathcal{L}\right) \\
\mathcal{L} & =\frac{1}{2}\left[\left(\nabla \phi_{\alpha}\right)^{2}+r \phi_{\alpha}^{2}\right]+\frac{u}{24}\left(\phi_{\alpha}^{2}\right)^{2} \tag{1}
\end{align*}
$$

1. In the paramagnetic phase, rotational invariance implies that we can write for the susceptibility, $\chi(q) \delta_{\alpha \beta}=\left\langle\phi_{\alpha}(q) \phi_{\alpha}(-q)\right\rangle$, where q is a D-dimensional spacetime momentum. Also, Dyson's equation has the form $\chi^{-1}(q)=q^{2}+r-\Sigma(q)$. Obtain the perturbative expansion for $\Sigma(q)$ to order u^{2}. Leave the result in the form of integrals over momenta.
2. Another useful identity in the theory of Gaussian integrals is

$$
\begin{equation*}
\prod_{i=1}^{n} \int_{-\infty}^{\infty} \frac{d x_{i}}{\sqrt{\pi}} \exp \left(-\frac{1}{2} \sum_{i, j} x_{i} M_{i j} x_{j}\right)=(\operatorname{det} M)^{-1 / 2}=\exp \left(-\frac{1}{2} \operatorname{Tr} \ln M\right) \tag{2}
\end{equation*}
$$

where M is a real, symmetric, positive-definite matrix (i.e. all eigenvalues are positive). This identity can be easily established by changing variables of integration to a basis in which M is diagonal. We will use this identity to compute the free energy density F, defined by $Z=\exp (-V F)$ where V is the volume of spacetime. In the paramagnetic phase, $r>0$, the perturbative expansion for F takes the form $F=C_{1}+C_{2} u+$ $\mathcal{O}\left(u^{2}\right)+\ldots$, while in the magnetically ordered phase, $r<0$, it takes the form $F=$ $C_{3} / u+C_{4}+\mathcal{O}(u)$. Obtain expressions for C_{1-4}. Assume we have normalized the $\mathcal{D} \phi_{\alpha}$ in Z to absorb the factor of $1 / \sqrt{\pi}$ in (2).
3. This is adapted from Problem ($6.5 \mathrm{a}-\mathrm{c}$) in Plischke and Bergersen to the notation we are using. You may follow their approach if you wish. We consider the consequences of anisotropy in the $\mathrm{O}(N)$ symmetry of \mathcal{L}. In some applications to classical ferromagnets and quantum antiferromagnets (which correspond to the case $N=3$), spin-orbit interactions may introduce a weak anisotropy in which the $r \phi_{\alpha}^{2}$ term in \mathcal{L} is replaced
by

$$
\begin{equation*}
r_{s} \sum_{\alpha<N} \phi_{\alpha}^{2}+r_{n} \phi_{N}^{2} \tag{3}
\end{equation*}
$$

while the quartic term is replaced by

$$
\begin{equation*}
\frac{u_{1}}{24} \sum_{\alpha, \beta<N} \phi_{\alpha}^{2} \phi_{\beta}^{2}+\frac{u_{2}}{12} \sum_{\alpha<N} \phi_{\alpha}^{2} \phi_{N}^{2}+\frac{u_{3}}{24} \phi_{N}^{4} . \tag{4}
\end{equation*}
$$

Clearly, the original problem with full $\mathrm{O}(N)$ symmetry is the case $r_{s}=r_{n}$ and $u_{1}=$ $u_{2}=u_{3}$. The model with $r_{s}=\infty, u_{1}=u_{2}=0$ is the field theory of the Ising model, while the model with $\mathrm{O}(N-1)$ symmetry is $r_{n}=\infty, u_{2}=u_{3}=0$.
(a) Show that the one-loop RG flow equations for this model are:

$$
\begin{align*}
\frac{d r_{s}}{d \ell} & =2 r_{s}+\frac{(N+1)}{6\left(1+r_{s}\right)} K u_{1}+\frac{1}{6\left(1+r_{n}\right)} K u_{2} \\
\frac{d r_{n}}{d \ell} & =2 r_{n}+\frac{(N-1)}{6\left(1+r_{s}\right)} K u_{2}+\frac{1}{2\left(1+r_{n}\right)} K u_{3} \\
\frac{d u_{1}}{d \ell} & =\epsilon u_{1}-\frac{(N+7)}{6\left(1+r_{s}\right)^{2}} K u_{1}^{2}-\frac{1}{6\left(1+r_{n}\right)^{2}} K u_{2}^{2} \\
\frac{d u_{2}}{d \ell} & =\epsilon u_{2}-\frac{2}{3\left(1+r_{s}\right)\left(1+r_{n}\right)} K u_{2}^{2}-\frac{(N+1)}{6\left(1+r_{s}\right)^{2}} K u_{1} u_{2}-\frac{1}{2\left(1+r_{n}\right)^{2}} K u_{2} u_{3} \\
\frac{d u_{3}}{d \ell} & =\epsilon u_{3}-\frac{3}{2\left(1+r_{n}\right)^{2}} K u_{3}^{2}-\frac{(N-1)}{6\left(1+r_{s}\right)^{2}} K u_{2}^{2}, \tag{5}
\end{align*}
$$

where K is the phase space factor discussed in class.
(b) Show that these equations reduce to the expected equations in the limits corresponding to the models with $\mathrm{O}(N)$, Ising, and $\mathrm{O}(N-1)$ symmetry just noted.
(c) Consider the fixed point of the flow equations with $\mathrm{O}(N)$ symmetry: $r_{s}=r_{n}=r^{*}$, and $u_{1}=u_{2}=u_{3}=u^{*}$. Show that, to leading order in ϵ, this fixed point has two relevant eigenvalues $2-(N+2) \epsilon /(N+8)$ and $2-2 \epsilon /(N+8)$ (see Plischke and Bergersen for some calculational hints).

