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Chapter 14: Exercises

• Useful reference for a complete treatment of bosonization: J. von Delft and H. Schoeller,

Annalen der Physik, 4, 225 (1999); cond-mat/9805275.

1. In this problem we return to the Ising chain in a transverse field

HI = −
∑
n

(
σz

2nσ
z
2n+2 + gσx

2n

)
, (1)

where, for furture convenience, we have placed the Ising spins only on the even sites of

a one-dimensional chain. We will establish the key result dim[σz] = 1/8 at the critical

point g = 1.

(a) Duality: First, we introduce a ‘dual’ formulation of HI . The operators in HI are

defined by the identities

σz
nσ

z
n = 1

σx
nσx

n = 1

σz
nσ

x
n = −σx

nσz
n

σz
nσ

x
m = σx

mσz
n , n 6= m (2)

We now introduce dual operators, σz
2n+1, σx

2n+1, residing on the odd sites, which

are defined by

σx
2n+1 ≡ σz

2nσ
z
2n+2

σz
2n+1 ≡

∏
m≤n

σx
2n (3)

Prove that the operators σx
2n+1 and σz

2n+1 obey exactly the same identities as the

corresponding operators in (2); hence these operators can also be viewed as the

Pauli matrices associated with a dual set of (fictitious) Ising spins. Also show

that HI can be rewritten in terms of these new spins as

HI = −
∑
n

(
gσz

2n−1σ
z
2n+1 + σx

2n+1

)
, (4)

Notice that (1) and (4) have precisely the same form with g ↔ 1/g. Hence HI

is ‘self-dual’. Argue that this means that the critical point of HI can only be at

g = 1.
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(b) Doubling Now we introduce another copy of HI , denoted H ′
I , defined in terms

of a separate set of spins τx
2n+1, τ z

2n+1 which reside on the odd sites, and which

commute with all the σx,z
2n (and hence also commute with the σx,z

2n+1). So

H ′
I = −

∑
n

(
τ z
2n−1τ

z
2n+1 + gσx

2n

)
, (5)

We can also introduce a dual representation of H ′
I in terms of Ising spins τ z,x

2n as

in (3).

(c) Equivalence to XY model. Finally, we introduce yet another set of operators,

µx
n+1/2, µz

n+1/2, which reside on the sites in between those of the spins of HI and

H ′
I . These are defined by

µz
2n+1/2 ≡ σz

2nτ
z
2n+1

µz
2n−1/2 ≡ τ z

2n−1σ
z
2n

µx
2n+1/2 ≡ τ z

2nσ
z
2n+1

µx
2n−1/2 ≡ σz

2n−1τ
z
2n (6)

Prove that µx,z
n+1/2 also obey the identities in (2), and so can also be considered as

a set of Pauli matrices for S = 1/2 spins residing on the half-integer sites. Show

also that

HXY ≡ HI + H ′
I =

∑
n

(
µz

n−1/2µ
z
n+1/2 + gµx

n−1/2µ
x
n+1/2

)
(7)

(d) Notice that at g = 1, HXY is precisely the quantum ‘XX’ model analyzed in

Section 14.1. We established there that dim[µz] = 1/4 at g = 1. Deduce from

this that dim[σz] = 1/8.

2. Interacting bosons in one dimension: We consider the following Hamiltonian

describing interacting bosons in the continuum in the presence of an applied periodic

potential:

H =
∫

dx

[
Ψ†(x)

(
− 1

2m

∂2

∂x2
− µ

)
Ψ(x) + VG cos(Gx)ρ(x)

]
+

1

2

∫
dxdx′ρ(x)VI(x−x′)ρ(x′)

(8)

where the number density ρ(x) = Ψ†(x)Ψ(x), the operators obey the canonical com-

mutation relations

[Ψ(x), Ψ†(x)] = δ(x− x′), (9)
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VI(x) is some short-range repulsive interaction, and VG is an externally applied periodic

potential. The chemical potential, µ, is chosen so that the mean number density of the

bosons 〈ρ(x)〉 = ρ0.

(a) We expect that the ground state of H is superfluid-like (more precisely, we will

show below that the superfluid order is only quasi-long-range) for generic values

of ρ0; there are exceptions when ρ0 satisfies certain commensuration conditions,

and these will be discussed below. For such ‘superfluid’ states, argue that the low

energy properties of H are actually described by the Tomonaga-Luttinger liquid

model in (14.22-14.26); the parameters vF and K depend upon the m, ρ0, VG, and

VI(x) in a highly non-trivial manner, and this dependence is usually impossible to

determine exactly. (I mention, as an aside, that for Galilean-invariant systems we

have the exact result KvF = πρ0/m). The argument proceeds as follows. Imagine

discretizing H on a lattice of spacing a, where a is much smaller than 1/G and the

mean spacing between the bosons. Because of the repulsive interaction between

the bosons, it is highly unlikely that more than one boson will ever occupy any

given lattice site. Let us label the sites by the integer, i, and introduce the lattice

boson operator, bi, obeying [bi, b
†
j] = δij. So b†ibi = 0, 1, which is the “hard-core”

condition. As in the discussion of the Jordan-Wigner transformation, show that

we can make a correspondence between the states of the S = 1/2 spin and the

hard-core bosons. Show that the operator correspondence is now very simple, and

there is no need for any non-local “string” operators:

σ+
i = b†i ; σz

i = 2b†ibi − 1. (10)

Show that the interacting boson model (for VG = 0) then maps onto a S = 1/2

spin chain similar that in (14.1). What is the interpretation of µ in the spin

language ?

(b) Continuing the discussion of the VG = 0 case, use the arguments in Chapter 14

to deduce the following correspondences between the operators of H and those of

the TL liquid:

Ψ†(x) = e−iθ(x)
∞∑

n=−∞
Ane

i2πρ0nx+i2nφ(x)

ρ(x) =
1

π
∂xφ(x) +

∑
n6=0

Bne
i2πρ0nx+i2nφ(x), (11)
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for some constants An, Bn. Use this to compute the long-distance form of

〈Ψ†(x)Ψ(x′)〉, and thus establish that the superfluid-order is only quasi-long-

range.

(c) Now consider the consequences of VG 6= 0. Use the representation of the density

in (11) to examine the structure of the perturbation theory for the partition

function in powers of VG. Show that the spatial integral causes most terms in this

perturbation theory to average out to zero on a short distance scale (of order 1/G

or the mean particle spacing) unless

2πρ0

G
=

p

q
, (12)

where p and q are relatively prime integers. For these special values of ρ0, show

that the leading perturbation to STL is described by the action

S = STL − v
∫

dxdτ cos(2qφ(x, τ)) (13)

where v ∼ V p
G. For what range of values of K is the superfluid state stable i.e.

v is an irrelevant pertubation ? For K outside this range, we expect that v will

renormalize to large values – this will pin the allowed values of φ, and the resulting

ground state will be a Mott insulator. Relate the commensuration condition on

the allowed values of ρ0 at which such Mott insulators can arise to the earlier

discussion in the chapter on the boson Hubbard model. What is the exponent

characterizing the power-law decay of 〈Ψ†(x)Ψ(x′)〉 in the superfluid state just

before it becomes unstable to the Mott insulator ?

4


