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I. FERMI LIQUID THEORY

The conventional theory of metals starts from a theory of the free electron gas, and then
perturbatively accounts for the Coulomb interactions between the electrons. Already at leading
order, we find a rather strong effect of the Coulomb interactions: a logarithmic divergence in
the effective mass of the single-particle excitations near the Fermi surface. Further examination
of the perturbation theory shows that this divergence of an artifact of failing to account for the
screening of the long-range Coulomb interactions. Formally, screening can be accounted for by a
simple modification of the perturbative series: introduce a dielectric constant in the interaction
propagator, and sum only graphs which irreducible with respect to the interaction line. Once
screening is accounted for by this method, the effective mass of the single-particle excitations
becomes finite.

In this initial section we ask: is it possible to give a description of the interacting electron gas
which is valid to all orders in the Coulomb interactions? By “all orders in perturbation theory”
we are assuming the validity of perturbation theory, and cannot rule out non-perturbative effects
which could lead to the appearance of new phases of matter. Indeed the study of such new phases
of matter is the focus of a major part of this book. But in this chapter, we present an all-orders
description of the electron gas. This starts by formalizing the definition of a “quasiparticle”

excitation, as a central ingredient in the theory of many-particle quantum systems.

A. Free electron gas

Let us start by recalling the basic properties of the free electron gas. We work in a second
quantized formalism with electron annihilation operators cp, wWhere p is momentum and o =7, |

is the electron spin. The electron operator obeys the anti-commutation relation

[Ckas Choglt = Ok rOas (1)

We assume the dispersion of a single electron is €,. The chemical potential is assumed to be

included in &,; so for the jellium model e, = A*p?/(2m) — p. Then the Hamiltonian is
H = Zepc;f,acpa : (2)
p,x
The T' = 0 ground state of this Hamiltonian is
G) =[] cal0) (3)
ep<0,a

The equation €, = 0 defines the Fermi surface in momentum space, separating the occupied and

unoccupied states.
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FIG. 1. Fermionic excitation spectrum of a Fermi liquid as a function of momentum p along a fixed

direction from the origin.

The elementary excitations of this state are of two types. Outside the Fermi surface we have

particle-like excitations

Particles: c;a|G), p outside Fermi surface, (4)

while inside the Fermi surface we have hole-like excitations
Holes: ¢pa|G), p inside Fermi surface. (5)

The energy of these excitations must be positive (by definition), and is easily seen to equal ||,
as illustrated in Fig. 1.

From these elementary excitations, we can now build an exponentially large number of multi-
particle and multi-particle excitations. In the free electron theory, their energies are simple the

sum of the energies of the elementary excitations Zp o €l

B. Interacting electron gas

Our basic assumption is one of adiabatic continuity from the free electron gas. We imagine we
can tune the strength of the Coulomb interactions, and slowly turn them on from the free electron
theory. Alternatively, we can assert that there is no quantum phase transition as the strength of
the interactions is increased: note this is an assumption, we will meet situations where this is not
the case later. In this adiabatic process, we assume that there is a correspondence between the
ground states and the elementary excitations of the free and interacting electron gas. So the state
|G) in (3) evolves smoothly to the unknown ground state of the interacting electron gas. And im-
portantly, there is also a correspondence in the excitations. In the ‘jellium’ model, with continuous
translational symmetry and a uniform background neutralizing charge, this correspondence is sim-

ply one-to-one: a particle excitation with energy e, evolves into a ‘quasiparticle excitation’ with
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FIG. 2. A point py on the Fermi surface, and its unit normal n.

a modified value of ¢,. And similarly, for a ‘quasihole’ with modified energy —e,. An important
assumption will be that €, remains a smooth function through the Fermi surface, and the energies
of both particles and holes is given by |e,|.

In the presence of a lattice, the process of adiabatic evolution is more subtle, because we cannot
assume that €, is only a function of |p|. Consequently the shape of the Fermi surface can change
in the adiabatic evolution, and a particle with momentum p can be inside the Fermi surface for
the free electron gas, and outside the Fermi surface for the interacting electron gas. The crucial
Luttinger theorem states that even though the shape of the Fermi surface can evolve, the volume
enclosed by the Fermi surface is an adiabatic invariant; we discuss this theorem in Section [ D. In
the presence of a lattice, our basic assumption is that there is a smooth function e, so that the
Fermi surface is defined by ¢, = 0, and the excitation energies of the quasiparticles and quasiholes
is |ep|. Near, the Fermi surface, we assume a linear dependence in momentum orthogonal to the
Fermi surface: at a point py on the Fermi surface, let the normal to the Fermi surface be the

direction n (the value of pp can depend upon py, see Fig. 2), and so we can write for p close to pg
6p:UF(p_IQO) "N, Vp = |VP5P| EpF/m*7 (6>

where pr = |po|. This equation defines the Fermi momentum pg, the Fermi velocity vg, and the
effective mass m*, all of which can depend upon the direction pg in the presence of a lattice. Note
that Ve, = |Vpep|n is a vector normal to the Fermi surface.

A further assumption in the theory of the interacting electron gas is that we can build up the
exponentially large number of other excitations also be composing the elementary excitations. (In
a finite system of size N, the number of elementary excitations is of order N, while the number
of composite excitations is exponentially large in N.) As we are interested in the thermodynamic
limit, we can characterize these excitations by the densities of quasiholes and quasiparticles. In
practice, it is quite tedious to keep track of two separate densities, along with a non-analytic

dependence of their excitation energy, |¢,| on p. Both these problems can be overcome by a clever
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FIG. 3. Plot of the quasiparticle distribution functions n(p) and on(p) of an excited state of the Fermi
liquid. Note that on(p) has a discontinuity of unity at the Fermi surface.

mathematical trick; we emphasize that there is no physics assumption involved in this trick—it is
merely a bookkeeping device. We postulate that the interacting ground state has the same form
as the free electron ground state in (3). So the ground state has a density of quasiparticles nq(p)

given by

no(p) = p inside the Fermi surface

L,
no(p) =0, p outside the Fermi surface (7)

as shown in Fig. 3. Then, an excited state is characterized by density of quasiparticles n(p), but

the excitation energy will depend only upon

on(p) = n(p) — no(p), (8)

where dn(p) has a discontinuity of unity at the Fermi surface. So for p outside the Fermi surface
dn(p) measures the density of quasiparticle excitations, while for p inside the Fermi surface —dn(p)
measures the density of quasihole excitations. (All of these densities can also depend upon the
spin of the quasiparticles or quasiholes, a complication we shall ignore in the following discussion.)
So the actual density of excitations with energy |e,| is [0n(p)|. For the total excitation energy,
which depends on their product, we can drop the absolute value: this is one of the advantages of
this mathematical trick.

We assume we are at temperature T' < Ef, so that the density of quasiparticles and quasiholes
is small. Our first thought would be that because of the low density, we can ignore the interactions
between the quasiparticles and quasiholes, and compute the total energy of the multiparticle/hole
excitations simply by adding their individual energies. An important observation by Landau was

that this is not correct. If we wish to work consistently to order (7T/Er)? in the total energy,
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one (and only one) additional term is necessary; ignoring spin-dependence, we present the Landau

p) =) epon(p) ZF . on(p)on(k) (9)

where V' is the volume of the system. At a temperature T < Ep, dn(p) is of order unity only in a

energy functional

window of momenta with vp|p — pr| ~ T where |ep| ~ T. Then, as we perform the radial integral
in the first term in (3), we pick up a factor 7' from ¢,, and a second factor of 7" from the limits on
the integral: so the first term is of order 72. Landau’s point is that the second term in (9) is also
of order T?: there now are 2 integrals over radial momenta, and their product yields a factor of T2.
This term describes the interaction between the quasiparticles and quasiholes, and is characterized
by the unknown Landau interaction function Fy ;. To order T?, we can consistently assume that
all the quasiparticles and quasiholes are practically on the Fermi surface in the interaction term,
and so F, ; depends only upon the directions of p and k.

Although the quasiparticles and quasiholes are assumed to interact in Landau’s functional, the
interaction is conservative: 7.e. it does not scatter quasiparticles between momenta, and change
the quasiparticle distribution function. The main effect of the interaction term is that the change
in the energy of the system upon adding a quasiparticle or quasihole depends upon the density
of excitations already present. We will consider scattering processes of quasiparticles later in
Section [ C: these lead to a finite quasiparticle lifetime, but the correponding corrections to the
energy functional are higher order in 7.

Landau’s central point is that the values of m* and F, , are sufficient to provide a description
of the low temperature properties of the interacting electron gas to order (T//Er)?, and all orders

in the strength of the underlying Coulomb interactions.

C. Green’s functions and quasiparticle lifetime

For further discussion of the properties of the Fermi liquid, and the nature of its corrections
when we consider higher temperatures, it is useful to employ the language of Green’s functions. We
use the standard many-body Green’s function defined in Ref. [1]. The most convenient definition

starts from the Green’s functions defined in imaginary time 7 (ignoring the electron spin «)

G(p,7)=— <TTcp(T)cI,(O)> (10)
where T, is the time-ordering symbol. We can then Fourier transform this to the Matsubara
frequencies w,, = (2n+1)7T/h, n integer, to obtain G(p, iw,). More generally, we can consider the
Green’s function in the complex z plane, G(p, z), obtained by analytic continuation of G(p, iw,,).
This Green’s function obeys the spectral representation

G(p, 2) :/m dQ% (11)
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where p(p, Q) = —(1/7)Im [G(p, Q2 +i07)] > 0 is the spectral density. We will also refer to the
retarded Green’s function G®(p,w) = G(p,w + i0T), and more generally G%(p, z) = G(p, z) for z
in the upper-half plane. Closely associated is the electron self-energy ¥(p, z), which is related to

the Green’s function by Dyson’s equation

1
z—€) — Y (p, z)

G(p,z) = (12)
where by 52, we now denote the bare electron dispersion before the effects of electron-electron
interactions are accounted for.

The postulates of Fermi liquid theory described above have strong implications for the structure
of the Green’s function in the complex frequency plane. Specifically, the existence of long-lived
quasiparticles near the Fermi surface implies that the Green’s function has a pole very close to
the real frequency axis, at a frequency obeying Re(z) = ¢, for p close to the Fermi surface. The
existence of such a pole implies a free particle behavior of the Green’s function at long times,
representing the propagation of the quasiparticle. In this section, we wish to go beyond Fermi
liquid theory and include a finite quasiparticle lifetime by taking the pole just off the real axis.

Actually, there is an important subtlety in the statement “there is a pole in the Green’s function”
that we need to keep in mind. The spectral definition (11) implies that G(p, z) is an analytic
function for all z, with a branch cut on the real frequency axis, for an interacting system with
a reasonably smooth spectral density p(p,€2). The pole is actually in a different Riemann sheet
from the definition (11), and is reached by analytically continuing across the branch cut. So the
retarded Green’s function G (p, z) is analytic for all 2 in the upper-half plane, and the pole is
obtained when we analytically continue GT(p, 2) to the lower-half plane (where it is not equal to
the G(p, z) defined by (11)). For p close to the Fermi surface in a Fermi liquid, this pole is at a
frequency z = e, — i, where 7y, > 0 is related to the quasiparticle lifetime 7, = 1/(27,) because
it leads to exponential decay for the Green’s function in real time (the factor of 2 arises because
we measure the probability of observing a quasiparticle a time 7, after creating it). Note that the
pole is in the lower-half plane of the analytically continued G(p, z) for both signs of ¢, i.e. for
both quasiparticles and quasiholes: see Fig. 4.

Ultimately, this complexity can be succinctly captured by initially restricting attention to the G
Green’s function on the imaginary frequency axis. Then, the existence of the quasiparticle implies
that the Green’s function defined by (11) obeys

Zp
iw — ep + ivpsgn(w)

G(p, ’ZW) = + Ginc(p7 ZWn) ) (13>

where 52, is the ‘bare’ electron dispersion,
£y = €0+ Re [S(p, 0) (14)
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FIG. 4. The poles of the Green’s function Gf(p, z) in the complex z plane. The poles are in the second

Riemann sheet, and the horizontal line represents the branch cut implied by (11).

is the ‘renormalized’ quasiparticle dispersion, and
Yp = —Im [S(p, e, +i07)] > 0. (15)

Consistency of the above definitions requires that the inverse lifetime of the quasiparticle is much

smaller than its excitation energy, i.e.

’YP << |€p| ) (16>

for p close the Fermi surface. The Fourier transform of G has a slowly-decaying contribution
which is just that of a free particle but with renormalized dispersion, and an amplitude suppressed
by Zp. Consequently, Zp is the quasiparticle residue, and it equals the square of the overlap
between the free and quasiparticle wavefunctions. The Gy, term is the ‘incoherent’ contribution,
associated with additional excitations created from the particle-hole continuum upon inserting a
single particle into the system: this contribution decays rapidly in time, and can be ignored relative
the quasiparticle contribution for the low energy physics.

From (13), we can now compute the momentum distribution function n.(p) of the underlying

electrons;
ne(p) = (che) . (a7)

where we are dropping the spin index. For a free electron gas
ne(p) = 9(—52), free electrons, T'= 0, (18)

where 6(z) is the unit step function. So there is a discontinuity of size unity on the Fermi surface
in n.(p). For the interacting electron gas, it is important to distinguish n.(p) from the distribution
function of quasiparticles n(p) in (8). The quasiparticle momentum distribution function continues

to have a discontinuity of size unity on the Fermi surface ¢, = 0. For the electron momentum
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FIG. 5. The momentum distribution function of bare electrons in a Fermi liquid at 7" = 0. There is a

discontinuity of size Zp on the Fermi surface.

distribution function at T"= 0, we need to evaluate

> dw

. —_ el . iwot 19
nip) = [ GoG.)e (19)
Evaluating the integral in (19) using (13), we find a discontinuous contribution from the pole near

the Fermi surface. There is no reason to expect a discontinuity from Giy,., and so we obtain
ne(p) = Zp0(—¢p) + ..., interacting electrons, T' = 0, (20)

where . .. is the contribution from Gj,.. We show a typical plot of n.(p) in Fig. 5. Because n.(p)

must be positive and bounded by unity, we have a constraint on the quasiparticle residue
0<Z;<1. (21)

Note that a small Zp is not an indication that the Fermi liquid theory is not robust: it merely
indicates a small overlap between the bare electron and the renormalized quasiparticle. Systems
with very small Z; can be very good Fermi liquids: the heavy-fermion compounds discussed in
Section V are of this type. Rather it is a short quasiparticle lifetime, or large 7,, and the failure
of (16), which is a diagnostic of the breakdown of Fermi liquid theory. We will turn to ‘non-Fermi
liquids’ (which also have Z; = 0) in Section VII.

For an explicit evaluation of the inverse lifetime -, we have to consider processes beyond those
present in Landau Fermi liquid theory. In particular, we have to evaluate the imaginary part of
the self energy in (15) for p near the Fermi surface. This requires a somewhat tedious evaluation
of the relevant Feynman diagrams, and we will explicitly compute an example in Section VII A.

For now, we will be satisfied here by ‘guessing’ the answer by Fermi’s golden rule. Assuming only
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FIG. 6. Decay of a quasiparticle with momentum p by scattering off a pre-existing quasiparticle with

momentum k to produce a quasiparticles of momena p + q and k — q.

a contact interaction, U, between the quasiparticles, we can write down the inverse lifetime

Lm0, =200 Y @~ fepalll— o)

2
Tp Vv

X d(ep+ €k —Eprq — Ek—q) - (22)

This obtained by employing Fermi’s golden role to the process sketched in Fig. 6, and including
probabilities that the initial states are occupied, and the final states are empty. The momentum
integrals in (22) are quite difficult to evaluate in general, but it is not difficult to see that the result
becomes very small for p near the Fermi surface and small T', because of the constraints imposed
by the Fermi functions and the energy conserving delta function. A simple overestimate can be

made by simply ignoring the constraints from momentum conservation, in which case we obtain

o~ APy [ derdeades (o)1~ fe)[1 - )

[e.9]

X 0(e+e1—eg—e3)

w2T2/4  fore=0
= U?[d(0)*pp" x { /

23
e2/2 for T=0. (23)

More careful considerations of momentum conservations are needed to obtain the precise co-
efficients (see Section VII A for an example), but they show that the power-laws above in T'
and ¢ are correct. So at low temperatures, 7, ~ T2 is always much smaller than |e,| ~ T, and this
justifies Fermi liquid theory.

We can also use these results to give a formal definition of the Fermi surface using Green'’s
functions. Notice that v, in (23) vanishes as ¢ — 0 at 7" = 0. This follows from the vanishing of
the phase space for the decay of an excitation with energy € as ¢ — 0. This is actually a special

case of a more general phenomenon following from the stability of the ground state, and does not

11



even require excitations to be close to the Fermi surface. The more general statement is
Im [S(p,Q+i07)] 2 0asQ—=0at T =0 (24)

for any p, and its validity can be checked by examining the structure of the Feynman graph
expansion for . We will see in Section VIIB that (24) applies also to non-Fermi liquids without
quasiparticle excitations. We can now define the Fermi surface by the pole in the Green’s function
which is determined by

G (pp,i0t) =0at T =0. (25)

By (24), the left hand side of (25) is real, and so the solution of (25) determines a surface of co-
dimension 1 in p space, which is the Fermi surface. These definitions will be useful in establishing
the Luttinger relation constraining the volume enclosed by the Fermi surface, which we will discuss

next in Section I D.

D. The Luttinger relation

We will present a proof of the Luttinger relation following the classic text book treatments, but
will use an approach which highlights its connections to the modern developments. Specifically,
there is a fundamental connection between the Luttinger relation and U(1) symmetries [2, 3]: any
many body quantum system has a Luttinger relation associated with each U(1) symmetry, and this
connects the density of the U(1) charge in the ground state to the volume enclosed by its Fermi
surfaces. This relation applies both to systems of fermions and bosons, or of mixtures of fermions
and bosons. However, the relation does not apply if the U(1) symmetry is ‘broken’ or ‘Higgsed’
by the condensation of a boson carrying the U(1) charge. As bosons are usually condensed at low
temperatures, the Luttinger relation is not often mentioned in the context of bosons. However,
there can be situations when bosons do not condense e.g. if the bosons bind with fermions to form
a fermionic molecule, and then the molecules form a Fermi surface: then we will have to apply the
Luttinger relation to the boson density [2].

We begin by noting a simple argument on why there could even be a relation between a short
time correlator (the density, given by an ‘ultraviolet’ (UV) equal-time correlator) and a long-time
correlator (the Fermi surface is the locus of zero energy excitations in a Fermi liquid, an ‘infrared’

(IR) property). In the fermion path integral, the free particle term in the Lagrangian is

0
=Y (gra-n)a (26)

p

where we have now chosen to extract the chemical potential p explicitly from the bare dispersion

e9. The expression in (26) is invariant under global U(1) symmetry

cp— e’ = e (27)
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as are the rest of the terms in the Lagrangian describing the interactions between the electrons.
However, let us now ‘gauge’ this global symmetry by allowing 6 to have a linear dependence on
imaginary time 7:

cp = cpetT = e (28)

Note that in the Grassman path integral, ¢, and cl, are independent Grassman numbers and so
the two transformations in (28) are not inconsistent with each other. The interaction terms in the
Lagrangian are explicitly invariant under the time-dependent U(1) transformation in (28). The
free particle Lagrangian in (26) is not invariant under (28) because of the presence of the time
derivative term; however, application of (28) shows that u cancels out of the transformed £2, and
so has completely dropped out of the path integral. We seem to have reached the absurd conclusion
that the properties of the electron system are independent of p: this is explicitly incorrect even
for free particles.

What is wrong with the above argument which ‘gauges away’ p by the transformation in (28)7

The answer becomes clear from the expression for the total electron density
1 > dw . w0t
=y | oo (29)

The transformation in (28) corresponds to a shift in frequency w — w + ip of the contour of
integration, and this is not permitted because of singularities in G(p,iw). However, as show
below, it is possible to manipulate (29) into a part which contains the full answer, and a remainder
which vanishes because manipulations similar to the failed frequency shift in (28) become legal.
The key step to extracting the non-zero part is to use the following simple identity which follows

directly from Dyson’s equation (12)

G(p,iw) = Gys(p,iw) + Grw(p, iw)

Gis(p, i) = i3 [C(p, )]

Grw(p,iw) = —iG(p, iw)a%E(p, iw) . (30)

The non-zero part is Gyy: it is a frequency derivative, and so its frequency integral in (29) is not
difficult to evaluate exactly after carefully using the ¢°" convergence factor. The subscript of G ff
denotes that this the only term which is non-vanishing for free fermions; indeed we will see below
that the frequency integral of G's; has the same value for interacting fermions as for free fermions
with the same Fermi surface. The remaining contribution from Gy vanishes for free particles
(which have vanishing ¥J). Therefore, establishing the Luttinger relation, i.e. the invariance of the
volume enclosed by the Fermi surface, reduces then to establishing that the contribution of Gy
to (29) vanishes.

13



We consider the latter important step first. We would like to show that

Z/ —GLW (p,iw) =0. (31)

We now show that (31) follows from the transformations of Gy under the gauge transformation
in (28) for an imaginary chemical potential

+iwoT T T —iwoT
Cp — Cpe ;O Cpe . (32)

The argument relies on the existence of a functional, ® 1 [G(p, iw)], of the Green’s function, called

the Luttinger-Ward functional, so that the self energy is its functional derivative

0P

P S )

(33)

The existence of such a functional can be seen diagrammatically, in which the Luttinger-Ward
functional equals the interaction dependent terms for the free energy written in a ‘skeleton’ graph
expansion in terms of the fully renormalized Green’s function. Taking the functional derivative
with respect to G(p,w) is equivalent to cutting a single G from all such graphs in all possible ways,
and these are just the graphs for the self energy. For a more formal argument, see Ref. [4]. An

important property of the Luttinger-Ward functional is its invariance under frequency shifts
O [G(p,iw + iwg)] = @ [G(p,iw)] , (34)

for any fixed wy. Here, we are regarding ® as functional of two distinct functions fia(w), with
filw) = G(p,iw + iwy) and fo(w) = G(p,iw), and ¢ evaluates to the same value for these two
functions. Now note that this frequency shift is nothing but the gauge transformation in (32);
therefore (34) follows from the fact that such frequency shifts are allowed in @y The singularity
on the real frequency axis is sufficiently weak so that the frequency shifts are legal in a Fermi
liquid; but we note that in the non-Fermi liquid SYK model to be considered in Section VI, the
Green’s functions are significantly more singular at w = 0, and the analogs of (31) and (34) do
not apply. For the Fermi liquid, we can now expand (34) to first order in wy, using (33), and
integrating by parts we establish (31).

Now that we have disposed of the offending term in (30), we can return to (29) and evaluate
' dw 0 -
=y | SramlGm e (3)

We will evaluate the w integral by distorting the contour in the frequency plane. For this, we need
to carefully understand the analytic structure of the integrand. This is subtle, because there are

two types of branch cuts. One branch cut arises from the Green’s function: G(p, z) has a branch cut

14



along the real axis Im(z) = 0, with ImG(p, z) < 0 for Im(z) = 07, ImG(p, z) > 0 for Im(z) = 0~
and ImG(p, z) = 0 for z = 0. The other branch cut is from the familiar In(z) function: we take
this on the positive real axis, with a discontinuity of 2iw. First, we account for the branch cut in

G(p, z), by distorting the contour of integration in (35) to pick up the discontinuity ImG(p, z)
d 8 0
0e Z / z (p, Z+1 ) (36)
2 82 G(p,z+i07)
Note from (12) and (24) that on real frequency axis ImG(p,z + i0¥) — 0 as z — 0 or —oo.

Consequently the only possible values of In[G(p, z +i07)/G(p, z +i07)] are 0, £27i as z — 0 or

—00, from the branch cut of the logarithm. So we obtain from (36)

dEasl

1 .
= Z 0 (—ey + 1 — X(p,i0"))
p

0. (37)

where we have used (14) and (24). Because the branch cut of the logarithm to extends to z = 400,

Pe 27TV

only negative values of ¢, contribute to the z integral extending from z = —oo to z = 0. Eqn.
(37) is the celebrated Luttinger relation, equating the electron density to the volume enclosed by
the Fermi surface of the quasiparticles €, = 0. In the presence of a crystalline lattice, there can be
additional bands which are either fully filled or fully occupied: such bands will yield a contribution
of unity or zero respectively to (37).

To summarize, the Luttinger relation is intimately connected to the U(1) symmetry of electron
number conservation. Indeed, we can obtain a Luttinger relation for each U(1) symmetry of any
system consisting of fermions or bosons. The result follows from the invariance of the Luttinger-
Ward functional under the transformation in (32), in which we gauge the global symmetry to a
linear time dependence: in this respect, there is a resemblance to 'tHooft anomalies in quantum
field theories. If the U(1) symmetry is ‘broken’ by the condensation of a boson which carries U(1)

charge, then the Luttinger relation no longer applies.

II. QUANTUM PHASE TRANSITION OF ISING QUBITS
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III. ISING FERROMAGNETISM IN A METAL

See slides at https://sachdev.physics.harvard.edu/UQM24QPTM.pdf.
We now consider the onset of Ising ferromagnetic order in a metal. This can be described by
coupling the Z; to the o* ferromagnetic moment of a Fermi liquid of electrons ¢;. So we are led to

consider the Hamiltonian
H= ZakcLacka — JZ Z;Z; —h in —g Z Z; czaogﬁciﬁ (38)
k,o (ij) i 7

(we have changed notation, and now use h for the transverse field, and ¢ for the fermion-Ising
“Yukawa’ coupling). Near the quantum phase transition for the onset of ferromagnetism, we can
represent the quantum Ising model by a ¢* quantum field theory, as in Section II, and obtain the

cont inuum Lagrangian
k,a 87. e 2 4 '

- [#rgodaie (39)

The Yukawa coupling g between ¢ and the fermions c is relevant, and we will consider its conse-

quences in Section VII.

IV. SPIN DENSITY WAVE ORDER IN A METAL

See slides at https://sachdev.physics.harvard.edu/UQM24QPTM.pdf.

Let us now consider the onset of magnetism at a non-zero wavevector in a metal, often called
a spin density wave (SDW). We will focus on the case where the wavevector of the SDW is
K = (m,m) on the square lattice, and so the ordering has the same symmetry as the Néel state
in an insulating antiferromagnet. The main ingredient here will be a bosonic collective mode
representing antiferromagnetic spin fluctuations in the metal: this boson is the ‘paramagnon’.

Near the transition from the Fermi liquid to the antiferromagnetic metal, it is possible to derive
a systematic approach to the paramagnon modes of a metal. We begin with an electronic Hubbard

model

H= Z skcjmcka +U Z UZNEA (40)
k,a A

where n;y = CITCZ'T, and similarly for n;;. Upon using the single-site identity

1 1 2U U
U <nn - 5) (nu - 5) = —?53 + (41)
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FIG. 7. Feynman diagram leading to (46).

(which is easily established from the electron commutation relations) it becomes possible to de-
couple the 4-fermion term in a particle-hole channel. We decouple the interaction term in the
Hubbard model in (40), by the Hubbard-Stratonovich transformation

exp (%;/ms}) - /chi(r) exp (—;/df [%@3 — B, jaagﬂ < D (42)

We now have a new field ®;(7) which will play the role of the paramagnon field.

The path integral of the Hubbard model can now be written exactly as:

- / Deio(T)D®;(7) exp (— / dT{kZ;cjm [% + sk} Cha

3 o,
+ Z {%@? — @l . C;-La 2602‘6] }) . (43)

We can now formally integrate out the electrons, and obtain

= / H Do, (T) €exXp <_Sparamagn0n [@AT)]) ) (44>

where Z; is the free electron partition function. Close to the onset of SDW order (but still on the

non-magnetic side), we can expand the action in powers of ®

Spuesmsznon [:(7)] = & 3 |2 (g,0,)] {% - M} +o. (45)

2
q,Wn
where xo(q,w,) is the frequency-dependent Lindhard susceptibility, given by the particle-hole
bubble graph shown in Fig. 7

1
o T | 16
XO(q’ W Z ZEn — gk ZEn + Wy — 5k+q) ( )

Performing the sum over frequencies by partial fractions, we obtain

f 6lc+q )
n) = , 47
wlaion) = 3 L (47)
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From the structure of the ® propagator, it is clear that ® will first condense at the wavevector
Qmax at which xo(q,iw = 0) is a maximum, and @uay is then the wavevector of the SDW. In the
mean field treatment of (45), the appearance of the this condensate requires that U is large enough

to obey the ‘Stoner criterion’:
i . XO(qmaxaiw = O)
4U 2

This wavevector is in turn determined by the dispersion ¢, of the underlying fermions. For sim-

<0. (48)

plicitly, we will only consider the case of a SDW with wavevector K = (m, 7). The frequency
dependence of (g, iw) also has an important influence on the dynamics of the paramagnon fluc-

tuations, related to the damping computed in Section VII for the Ising ferromagnetic case.

A. Fermi surface reconstruction

Let us now move into the antiferromagnetic metal phase, where there is a ® condensate at
wavevector K = (7, )

(@) =ni Nz, (49)

with A measuring the strength of the Néel ordered moment. We wish to describe the excitations of
this state. One class of excitations are spin waves: these can be obtained by considering transverse
fluctuations of ® about the condensate in (49) using the full action in (44). However, there are also
low energy fermionic excitations in the antiferromagnetic metal, which are gapped in the insulator.
We can determine the spectrum of the fermions by inserting (49) into the Yukawa coupling; using

n; = B with K = (7, 7), we can write the fermion Hamiltonian in momentum space

Hppn =) [ekCLacka —-A CLacréacHK,a] + constant. (50)
k

The is the analog of the BCS Hamiltonian for superconductivity, and the analog of the pairing gap
is the energy
A= IN. (51)

But, in general, the spectrum of Hapy does not have a gap, as we will see below. As in BCS
theory, the value of A has to be determined self-consistently from the mean-field equations.

To obtain the fermionic excitation spectrum, we have to perform the analog of the Bogoliubov
rotation in BCS theory. This is achieved by writing Hapy in a 2 X 2 matrix form by using the
fact that 2K is a reciprocal lattice vector, and so €95 = €g; correspondingly, the prime over
the summation indicates that it only extends over half the Brillouin zone of the underlying lattice,

shown in the left panel of Fig. 8 which is the Brillouin zone of the lattice with Néel order.

/
Ck —AO’;Q Cka
R S R T T e | 52

o Ek+K Ck+ K,
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Square-lattice Hubbard model with no dopin

A#0 VANE(| A=0
and large and small

i AN VAN
i j\ 4 :
NSNS
Metal with Metal with

Insulator i electron and large Fermi
i hole pockets surface

FIG. 8. Fermi surfaces of the Néel state at doping p = 0. The pockets intersecting the diagonals of the
Brillouin zone have both bands in (53) empty and so form hole pockets, while the remaining pockets have
both bands occupied and form electron pockets. The dashed line in the insulator shows the boundary of

the Brillouin zone of the Néel state

It is now easy to diagonalize the 2 x 2 matrix in (52), and we obtain

2
€k — Ek+K 2
A

Unlike the BCS spectrum, the spectrum in (53) is not gapped, or even positive definite. Rather, it

1/2

(53)

is the spectrum of a metal, in which the negative energy states are filled, and bounded by a Fermi
surface. The Fermi surfaces so obtained is shown in Figs. 8, 9, 10 for different values of p.

We observe that the ‘large’ Fermi surface of the paramagnetic metal has ‘reconstructed’ into
small pocket Fermi surfaces in the SDW state. The excitations of the SDW metal are hole-like
quasiparticles on the Fermi surfaces surrounding the hole pockets, and electron-like quasiparticles
on the Fermi surfaces surrounding the electron pockets. The spin wave excitations interact rather
weakly with the fermionic quasiparticle excitations: this can be see from a somewhat involved
computation from the effective action.

Finally we discuss the fate of the Luttinger relation of Section I D in this metal. The Luttinger
relation connects the volume enclosed by the Fermi surface to the density of electrons, modulo 2
electrons per unit cell. It should be applied in the Brillouin zone of the Néel state, which is half
the size of the Brillouin zone of the underlying square lattice, as shown in Fig. 8. In real space,

this corresponds to the fact that the unit cell has doubled, and so the density of electrons per unit
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Square-lattice Hubbard model with hole dopin

A0 A#0 A=0

and large and small
3/\ AN

N
L

xzé\ﬁ/ \/

Metal with Metal with Metal with
hole pockets electron and “large” Fermi
hole pockets surface

FIG. 9. Fermi surfaces of the Néel state at p > 0. The pockets are as in Fig. 8.

Square-lattice Hubbard model with electron dopin

A0 A0 A=0

and large and small
j@\[ AR
)

L J

J L

[ ]

Metal with Metal with Metal with
electron pockets electron and large Fermi
hole pockets surface

FIG. 10. Fermi surfaces of the Néel state at p < 0, with pockets as in Figs. 8.

cell is 2(1 — p). For spinful electrons, the Luttinger relations measures electron density modulo 2,
and so the density appearing in the Luttinger relation is —2p. This has to be equated to twice
the volumes enclosed by the electron and hole pockets within the diamond shaped Brillouin zone
in Fig. 8. Let A;, be the area of a single elliptical hole pocket: there are 4 such pockets in the

complete Brillouin zone of the square lattice or 2 pockets in the Brillouiin zone of the Néel state,
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as is apparent from Figs. 8, 9, 10. Similarly, let A, be the area of a single elliptical electron pocket:
there are 2 such pockets in the complete Brillouin zone of the square lattice or 1 pocket in the

Brillouin zone of the Néel state. These arguments show that the Luttinger relation becomes

1
2X ——— X (=24, + A.) = —2p. 54
(2 7T)2 /2 ( h T+ ) 4 ( )
On the left hand side, the first factor is the spin degeneracy, and the second factor is the inverse of
the volume of the Brillouin zone of the Néel state. To reiterate, this is the conventional Luttinger
relation applied after accounting for the doubling of the unit cell, and it determines a linear

constraint on the areas of the electron and hole pockets.

V. FERMI VOLUME CHANGE IN A METAL

See slides at https://sachdev.physics.harvard.edu/UQM24FLs.pdf.

VI. THE SYK MODEL

See slides at https://sachdev.physics.harvard.edu/UQM24SYK.pdf.

The Hamiltonian of a version of a SYK model is illustrated in Fig. 11. A system with fermions
c;, 1 =1... N states is assumed. Depending upon physical realizations, the label ¢ could be position
or an orbital, and it is best to just think of it as an abstract label of a fermionic qubit with the
two states [0) and ¢/ |0). QN fermions are placed in these states, so that a density Q ~ 1/2 is
occupied, as shown in Fig. 11. The quantum dynamics is restricted to only have a ‘collision’ term
between the fermions, analogous to the right-hand-side of the Boltzmann equation. However, in
stark contrast to the Boltzmann equation, statistically independent collisions are not assumed,
and quantum interference between successive collisions is accounted for: this is the key to building
up a many-body state with non-trivial entanglement. So a collision in which fermions move from
sites ¢ and j to sites k and ¢ is characterized not by a probability, but by a quantum amplitude
Uij.ke, which is a complex number.

The model so defined has a Hilbert space of order 2V states, and a Hamiltonian determined
by order N* numbers Ujj.k. Determining the spectrum or dynamics of such a Hamiltonian for
large N seems like an impossibly formidable task. But with the assumption that the Ujj;, are
statistically independent random numbers, remarkable progress is possible. Note that an ensemble
of SYK models with different Uj;.1 is not being considered, but a single fixed set of Ujj;.x. Most
physical properties of this model are self-averaging at large IV, and so as a technical tool, they can
be rapidly obtained by computations on an ensemble of random Ujj..,. In any case, the analytic

results described below have been checked by numerical computations on a computer for a fixed
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FIG. 11. The SYK model: fermions undergo the transition (‘collision’) shown with quantum amplitude

Uijike-

G

G

FIG. 12. Self-energy for the fermions of A in (55) in the limit of large N. The intermediate Green’s

functions are fully renormalized.

set of Ujj.e. Recall that, even for the Boltzmann equation, there was an ensemble average over
the initial positions and momenta of the molecules that was implicitly performed.

Specifically, the Hamiltonian in a chemical potential p is

N
1
"= (2N)32 > Uweelcjeye, —p) cle; (55)
i3,k 0=1 4
cicj + ¢ = 0 , Cic;r- + C;Ci = 5ij (56>
1
Q:NZCICZ»; H,Q]=0; 0<Q<1, (57)

and its large IV limit is most simply taken graphically, order-by-order in U;j.x¢, and averaging over

Uij.ke as independent random variables with Usje = 0 and |Uyjke|?> = U2 This expansion can be
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used to compute graphically the Green’s function in imaginary time 7

G(r) =~ S (T (), (58)

where 7 is the time-ordering symbol, the angular brackets are a quantum average for any given
Uij.xe, and the over-line denotes an average over the ensemble of Ujj.ke. (It turns out that the last
average is not needed for large IV, because the quantum observable is self-averaging.) In the large
N limit, only the graph for the Dyson self energy, ¥, in Fig. 12 survives, and the on-site fermion

Green’s function is given by the solution of the following equations

B 1

iwn + o — S(iwy,)
N(1) = —U*G*(1)G(-7)

G (iwy,)

where w, is a fermionic Matsubara frequency. The first equation in (59) is the usual Dyson relation
between the Green’s function and self energy in quantum field theory, the second equation in (59)
is the Feynman graph in Fig. 12, and the last determines the chemical potential p from the charge
density Q. These equations can also be obtained as saddle-point equations of the following exact

representation of the disordered-averaged partition function, expressed as a ‘G' — 3’ theory [5-8]:

Z == /DG(Tla TQ)DE(Tla 7-2) eXp(—N[)
I =1Indet [0(1) — 72)(0s, + p) — X(71,72)]
+ /d71d72 [2(71,7'2)G(T2,T1) + <U2/2)G2<7’27Tl)G2(7'177'2)] (6())
This is a path-integral over bi-local in time functions G(7,72) and (7, 72), whose saddle point

values are the Green’s function G(1; — 72), and the self energy (7 — 72). This bi-local G can be

viewed as a composite quantum operator corresponding to an on-site fermion bilinear
Glrim) =~ ST (ealm)el () (61)
Y N : (2 7

that is averaged in (58).

For general w and T, the equations in (59) have to be solved numerically. But an exact analytic
solution is possible in the limit w, 7 < U. At T' = 0, the asymptotic forms can be obtained
straightforwardly [9]

|—1/2

G(iw) ~ —isgn(w)|w , B(iw) — X(0) ~ —isgn(w)|w|"?, (62)
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and a more complete analysis of (59) gives the exact form at non-zero T' (h = kg = 1) [10]

Gw) = (27TT)1/2F(§_ o . ) lw]|, T < U. (63)

4 27T

Here, £ is a dimensionless number which characterizes the particle-hole asymmetry of the spectral
function; both £ and the pre-factor C' are determined by an angle —7/4 < 0 < 7/4

2 _ sin(mw/4 4 0) o T 14 (64)
sin(r/4—0) U2 cos(20) ’
and the value of 6 is determined by a Luttinger relation to the density Q [5]

1 6 sin(20)
Q= 3T T (65)

A notable property of (63) at £ = 0 is that it equals the temporal Fourier transform of the
spatially local correlator of a fermionic field of dimension 1/4 in a conformal field theory in 1+1
spacetime dimensions. A theory in 0+1 dimensions is considered here, where conformal trans-
formations map the temporal circle onto itself, as reviewed in Appendices A and B of Ref. [11];
such transformations allow a non-zero £. An important consequence of this conformal invariance
is that (63) is a scaling function of fw/(kgT) (after restoring fundamental constants); in other
words, the characteristic frequency scale of (63) is determined solely by kgT'/h, is independent of
the value of U/h. A careful study of the consequences of this conformal invariance have established
the following properties of the SYK model (more complete references to the literature are given in
other reviews [11, 12]):

e There are no quasiparticle excitations, and the SYK model exhibits quantum dynamics with
a ‘Planckian’ relaxation time of order i/(kpT) at T' < U. In particular, the relaxation time
is independent of U, a feature not present in any ordinary metal with quasiparticles. While
the Planckian relaxation in (63) implies the absence of quasiparticles with the same quantum
numbers as the ¢ fermion, it does not rule out the possibility that ¢ has fractionalized into
some emergent quasiparticles; this possibility is ruled out by the exponentially large number

of low energy states, as discussed below.

e At large N, the many-body density of states at fixed Q is [7, 8, 13-16] (see Fig. 13a)

D(E) ~ %exp(Nso) sinh <\/2N7E> , (66)

where the ground state energy has been set to zero. Here sq is a universal number dependent
only on Q (sp = 0.4648476991708051 ... for Q@ = 1/2), v ~ 1/U is the only parameter
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Energy, in units of U

D(Ey + E) ~ N~ elV*0 sinh(1/2N+E)

kB_N(sO—l—'yT)—an( T > E
B AO lexp(S(E)/kp)] 6(E)
D(E)
Number (a) Number (b)

FIG. 13. (a) Plot of the 65536 many-body eigenvalues of a N = 32 Majorana SYK Hamiltonian; however,
the analytical results quoted here are for the SYK model with complex fermions which has a similar
spectrum. The coarse-grained low-energy and low-temperature behavior is described by (66) and (68).
(b) Schematic of the lower energy density of states of a supersymmetric generalization of the SYK model
[15, 17]. There is a delta function at E = 0, and the energy gap A is proportional to the inverse of
S(E =0).

dependent upon the strength of the interactions, and the N dependence of the pre-factor is

discussed in Ref. [16]. Given D(F), the partition function can be computed from

Z = /oo dED(E) exp (—%) . (67)

at a temperature 7', and hence the low-T" dependence of the entropy at fixed @ is given by

S(T)
kg

3 U InN

The thermodynamic limit limy_, S(7")/N yields the microcanonical entropy

S(E)/kp = Nsg+ /2N~FE, (69)

and this connects to the extensive E limit of (66) after using Boltzmann’s formula. The
limit limp o limy 00 S(T')/(kpN) = so is non-zero, implying an energy-level spacing ex-
ponentially small in N near the ground state: the density of states (66) implies that any
small energy interval near the ground state contains an exponentially large number of energy
cigenstates (see Fig. 13a). This is very different from systems with quasiparticle excitations,

whose energy level spacing vanishes with a positive power of 1/N near the ground state,
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as quasiparticles have order N quantum numbers. The exponentially small level spacing

therefore rules out the existence of quasiparticles in the SYK model.

However, it important to note that there is no exponentially large degeneracy of the ground
state itself in the SYK model, unlike that in a supersymmetric generalization of the SYK
model (see Fig. 13b) and the ground states in Pauling’s model of ice [18]. Obtaining the
ground-state degeneracy requires the opposite order of limits between 7" and N, and numer-
ical studies show that the entropy density does vanish in such a limit for the SYK model.
The many-particle wavefunctions of the low-energy eigenstates in Fock space change chaot-
ically from one state to the next, providing a realization of maximal many-body quantum
chaos [19] in a precise sense. This structure of eigenstates is very different from systems with
quasiparticles, for which the lowest energy eigenstates differ only by adding and removing a

few quasiparticles.

The E dependence of the density of states in (66) is associated with a time reparameterization
mode, and (66) shows that its effects are important when E ~ 1/N. The low energy quantum
fluctuations of (60) can be expressed in terms of a path integral which reparameterizes
imaginary time 7 — f(7), in a manner analogous to the quantum theory of gravity being
expressed in terms of the fluctuations of the spacetime metric. There are also quantum
fluctuations of a phase mode ¢(7), whose time derivative is the charge density, and the path

integral in (60) reduces to the partition function

L /)
Zsyx_rr =" /DfD<Z5 exp <—ﬁ/ dr Lsyk-7r[f, 9] (70)
0

The Lagrangian Lgy 7 is known, and involves a Schwarzian of f(7). Remarkably, despite
its non-quadratic Lagrangian, the path integral in (70) can be performed exactly [15], and
leads to (66).

A. The Yukawa-SYK model

The SYK model defined above is a 041 dimensional theory with no spatial structure, and so

cannot be directly applied to transport of strange metals in non-zero spatial dimensions. A great

deal of work has been undertaken on generalizing the SYK model to non-zero spatial dimensions

[11], but this effort has ultimately not been successful: although ‘bad metal’ states have been

obtained, low T strange metals have not. But another effort based upon a variation of the SYK
model, the 0+1 dimensional ‘Yukawa-SYK’ model [17, 20-30], has been a much better starting

point for a non-zero spatial dimensional theory, as shown in Section VIII. The present subsection

describes the basic properties of the simplest realization [24, 28-30] of the Yukawa-SYK model.
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FIG. 14. Self-energies of the fermions and bosons in the Hamiltonian Hy in (71). The intermediate

Green’s functions are fully renormalized.

In the spirit of (55), a model of fermions ¢; (¢ = 1...N) and bosons ¢, (¢ = 1...N) with a

Yukawa coupling g;;, between them is now considered

y=—p) cle+ Z% (7 +widy) + Zgzgec ¢Pes (71)
i ¢

ije

with g5, independent random numbers with zero mean and r.m.s. value g. The bosons are
oscillators with the same frequency wyp, while the fermions have no one-particle hopping. The large
N limit of (71) can be taken just as for the SYK model in (55). The self-energy graph in Fig. 12
is replaced by those in Fig. 14: the phonon Green’s function is D, while the phonon self-energy is
I1.

Continuing the parallel with the SYK model, the disorder-averaged partition function of the
Yukawa-SYK model is a bi-local G-X-D-II theory, analogous to (60):

= / DG DY DD DII exp(—NSau)

San = — Indet(0; — p+ X) + ln det(—0? + wi — 1) (72)
2
/dT/dT {— 7)G(1,7') + %H(T’,T)D(T, )+ %G(T, ™YG(7',7)D(7,7")
The large N saddle-point equations replacing (59) are:
. 1 , 1
Glin) = iwy + p— X(iw,) Dliwn) = w2 + wg — M (iw,)
%(r) = ¢*G(r)D(r) , T(r)=—¢*G(r)G(~T) (73)

The solution of (72) and (73) leads to a critical state with properties very similar to that of
the SYK model [24, 28-30]. Only the low-frequency behavior of the Green’s functions at T'= 0, is
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quoted analogous to (62):
. . —(1-24) . 1—4A 1 1
G(iw) ~ —isgn(w)|w| ,  D(iw) ~ |w| b7 < A< 3" (74)

Inserting the ansatz (74) into (73) fixes the value of the critical exponent A.

AN — 1
2(2A — 1)[sec(2rA) — 1]

=1 , A=0.42037... (75)

Although the fermion Green’s function has an exponent which differs from that of the SYK model,
the thermodynamic properties have the same structure as that of the SYK model, including the

presence of the Schwarzian mode and the form of the many-body density of states.

VII. QUANTUM CRITICALITY OF CLEAN METALS

See slides at https://sachdev.physics.harvard.edu/UQM24QCM.pdf.

Following the example of the Yukawa-SYK model in Section VI A, it was argued [31-33] that
problems of fermions coupled to a critical boson could also be addressed by examining ensembles
of theories with different Yukawa couplings. It is also possible to choose the ensemble so that
the couplings are spatially independent, and this maintains full translational symmetry in each
member of the ensemble. If most members of the ensemble flow to the same universal low energy
theory, then we can access the low energy behavior by studying the average over the ensemble. We
also obtain the added benefit of a G-X action with large N prefactor, which allows for a systematic
treatment of the theory.

Here we consider the case of an order parameter of a broken symmetry at zero momentum, such
as Ising ferromagnetism of Section III. Similar analyses apply to the cases in Sections [V and V,

but will not be discussed here. So we consider the following generalization of the theory (39)
N
L= S [ ] et [arr S {570 @ v
a=1 k
Jo
-/ S 91, s (76)

7=1 a,8=1
Here the fermion has N components, the boson has M components, and we take the large N limit
with

A= (77)

fixed. The Yukawa coupling is taken to be a random function of the flavor indices with

Japy =0, Gagy = Goars  |9apl* = 9" (78)
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-
- -

FIG. 15. Saddle point equations for the fermion self energy 3 and boson self energy II, expressed in terms
of the renormalized fermion Green’s function G and boson Green’s function D. The filled circle is the

Yukawa coupling gas--

We have dropped the quartic self-coupling u of the the scalar field for simplicity: it is unimportant
for the leading critical behavior, but is needed for certain sub-leading effects at non-zero temper-
ature [33]. The original theory in (39) has a ¢ — —¢ symmetry which is only statistically present
in (76): we can maintain this symmetry in each member of the ensemble by dividing the indices
into groups of 2, but we avoid this complexity because it does not modify the large N results. We
consider an ensemble of complex couplings because it simplifies the analysis, but real couplings
lead to essentially the same results.

We can now proceed with the large N analysis following the script of the Yukawa-SYK model.
As in Section VI A, the large N saddle point equations are most easily obtained by a diagrammatic
perturbation theory in g, in which we average each graph order-by-order. In the large N limit,

only the graphs shown in Fig. 15 survive, and yield the following saddle point equations

Y(r,7) = ¢*AD(r,7)G(r,T),

H(r,7) = —¢*G(—r, —7)G(r, 1),
1
iw, —e(k) — X(k,iw,)’
1

D(q,i€,) = .
(,%62m) 0, + ¢+ s —1l(g, i) (7%)

G(k,iw,) =

Here G is the Green’s function for the fermion ¢, and ¥ its self energy, and D is the Green’s
function for the boson f, and II is its self energy.

The equations (79) are the analog of the Yukawa-SYK equations in (73), but the Green’s
functions now involve both spatial and temporal arguments. Remarkably, as we shall see in

Section VIT A, an exact solution of the low energy scaling behavior is possible for (79), just as
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it was for the Yukawa-SYK model.

For completeness, we also write down the path integral of the averaged theory using bilocal
Green’s functions, the analog of (60) for the SYK model. We introduce the spacetime co-ordinate
X = (7,z,y), and all Green’s functions and self energies in the path integral are functions of two

spacetime co-ordinates X; and X5. Then we have

= / DG(X1, X2)DE(X1, X2)DD(X1, Xo)
x DII( X1, Xs) exp [-NI(G, %, D, 11)] . (80)

The G-3-D-II action is now

1(G,S,D,I) = gQTATr (G- [GD]) - Te(G - 2) + %Tr(D 10) (81)

—Indet [(9r, +&(—iV1)) 6(X1 — X3) + B(X1, Xy)]
+ 2 hndet [(~32, — V3 + ) 5(X) — Xa) — TI(X,, X))

where we have introduced notation

Tr(f-g) = /Xmch2 F(Xa, X1)g( X1, Xs). (82)

Note the crucial pre-factor of N before I in the path-integral. It can be verified that the saddle
point equations of (81) reduce to (79).

A. Patch solution

This subsection will present an exact solution of the saddle point equations (79) in the low
energy scaling limit. We will be able to obtain this solution for an arbitrary (k), and for a general
shape of the Fermi surface. The key to the solution is the observation that the singular behavior
at any point on the Fermi surface is determined only by a small momentum space patch around it,
as well as that of the anti-podal point. We do need to include the curvature of the Fermi surface
though, and it is not sufficient to think of the Fermi surface as a set of one-dimensional chiral
fermions at each point on the Fermi surface.

We begin by evaluating IT in (79) using the bare fermion Green’s function. This yields the
Lindhard susceptibility in (46) and (47)

2 d*k 1
I(q,iQ,) TZ/47T2 (i(wy + Q) — ek + q)) (iw, — £(k))
_ o [ &k fle(k+q)) — f(e(k))
Y /47T2 iQm+e(k)—ck+q)’ (83)

where f(e) is the Fermi function. We are interested in the behavior of II for small q and €2,,, at low

T. On the real frequency axis, the real part of II is not universal , and depends in a complicated
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FIG. 16. Points +kg on the Fermi surface which satisfy (85). The momentum of the boson is g, and the

low energy fermion contributions arise from momenta in the vicinity of +k.

manner on the entire fermion dispersion. However, the behavior of the imaginary part of II is
much simpler and universal. We have
d*k

T (e + @) — F(e() 8 (2 + (k) — o(k + q)

ImTII(q, Q) = —WgQ/
= 7rg2Q/ % d(e(k)o(2+e(k)—c(k+q) asT —0. (84)

The last expression contains an integral over 2-dimensional momentum space of k, along with 2
delta functions containing arguments which are functions of k. Generically, both delta functions
will be satisfied only at isolated points in momentum space. For |q|, |2] — 0, the isolated points
are solutions of

e(k)=0 and q-Vie(k)=0. (85)

The solution of (85) is illustrated in Fig. 16: for a simply connected, convex Fermi surface, each
direction of q is identified with the 2 anti-podal points kg on the Fermi surface where q is parallel
to the tangent to the Fermi surface. Note that the value of kg is fully determined by q, but we
leave this dependence implicit.

As illustrated in Fig. 16, we choose our momentum space axes so that g = (0, g,). In the vicinity

of ky we write the fermion dispersion near the Fermi surface patch at kg as

K
k=ko+ (k. k), e(k)=uvpk,+ 51{:5, (86)
whereas near —ky we have
K
k=—ko+ (ko, k), e(k)=—vpk, + §k:§. (87)

Here vp is the Fermi velocity, and x is the curvature of the Fermi surface. The values of vp and &

depend upon kg which in turn depends upon q, and they will vary as ky moves around the Fermi
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surface, but we have not explicitly indicated that; our results will remain valid even in the presence

of such variation. We can now insert (86) into (84) and obtain the Landau damping result

ImIl(gq,) = 27rgQQ/ M 6 (vrks + Iik2/2) (kkyqy + qi/? - Q)
__ g0
2mvpk|qy|

(88)

where the leading factor of 2 is from the sum over the anti-podal points. Note that the curvature
k appears in the denominator, and so it is not valid to take the x — 0 limit, and no description in
terms of purely linearly-dispersing excitations around the Fermi surface is possible.

Let us now turn to an evaluation of II in (79) using the fully renormalized Green’s function.
Remarkably, as we will now show, the result in (88) remains largely unchanged. We anticipate

that full solution of (79) leads to a fermion Green’s function of the following form
Y(k,iw,) = Xo(k) + X(iw,) (89)

The momentum dependence of ¥q(k) will be non-singular, and we assume it can be absorbed
by redefinition of the values of vr and k; we will therefore not include it in the computations
below. The frequency dependent part (iw,) can be singular (as we will see below) but it has
no dependence on k, and k,; however it will depend upon the choice of kg, via the implicit kg
dependence of vy and k. We now insert X(iw,) into the first expression in (83) and use the

dispersion (86) to obtain

1
(g, i) = —2¢°T
<q> t Z/ 471'2 an —vpk, — fﬁqy/Q - (an))

1
X :
(i(wn + Q) — vrky — k(ky + q)?/2 — B(iw, + Q)

(90)

At this point in (83) we evaluated the summation over the frequency w,,, but we are unable to do
that here because of the unknown frequency dependence in X (iw,). So we have instead decided
to focus only on the contribution of the patches near +kj, and linearized the fermion dispersion
accordingly. In this situation the dependence of the integrand on k, and £, is simple. Performing

the integral over k, in (90) we obtain

—@gQT dk‘

I(q, i,

+ Q) — sgn(w,)]

1
. 91
% — /iqy/Q Kayky + X(iwy,) — X(iw, + Q) (91)

We have assumed here that sgn(w, — 3(iw,)/i) = sgn(w, ), and this always turn out to be the case
from the positivity requirements of the fermion spectral weight. The next step is the evaluation of

the g, integral in (91). The real part of this integral is logarithmically divergent at large g,, but

43



then we are no longer in a regime where it is valid to keep the linearized dispersion. We assume
that the divergent pieces only yield non-singular contribution, and keep the singular imaginary

part of the integral. In this manner, we obtain from (91)

II(q,i2,) sgn ) [sen(wy, + Q) — sgn(w,
(q %UF’qy|Zg gn( ) — sgn(w,)]

910

——. 92
2mRUp|gy| (92)

This agrees precisely with (88), and all dependence on X has dropped out, as we claimed.

The final step in the exact solution of (79) is the evaluation of ¥(iw,) at the point k¢ on the
Fermi surface. As we noted earlier, the parameters vr and x depend smoothly upon the choice
of kg, and this will be the only momentum dependence in the singular part of the fermion self
energy. A careful evaluation first proceeds by the real frequency method used for II in (84), and
we can follow that method for the imaginary part of the ¥(w) on the real frequency axis. Such an
evaluation shows that the result is dominated by the fermions in the vicinity of kg, and with boson
momentum ¢, > ¢, which is nearly tangent to the Fermi surface. However, we proceed directly to
the second method used for IT below (90) in which we integrate over momenta before we integrate
over frequency: this has the advantage of allowing use to include X (iw,,) in the fermion propagator.

From the first equation in (79), using the linearized dispersion and result above, we have

. 1
Y(kyiwy,) = g2)\/ TZ IO

W @2+ s+

2mupk|gy
1

X )
i + twn) — vp (ks + ¢) — k(ky + ¢y)?/2 — X(i€2,, + iwy,)

(93)

where we have dropped ¢, in the boson propagator. We can now perform the integral over ¢,
and observe that the expression is indeed independent of k, and the frequency dependent . in the

denominator. So we have our closed-form expression for the fermion self energy

dq sgn(wn—i-Q )
Y(iwy) = ——N ) 94
o =i [T im o0

2mvpk|qy|

We are interested in the singular behavior of this fermion self energy at the critical point s = 0.
At T > 0, we have to account for thermal effects arising from the boson self-interaction u in (39)
which make the renormalized s temperature dependent. We will not discuss these subtle issues
[32-35] here, and limit ourselves below to 7' = 0.

For s > 0 and 7" = 0, evaluation of the integrals over ¢, and € in (94) shows that Im¥(w) ~
—(w/s)?In(1/|w|), which is the expected behavior for a two-dimensional Fermi liquid (see QPT
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FIG. 17. Plot of fermion spectral density from (97) at wavevectors k = ko + (kz,0) across the Fermi

surface without quasiparticles. Here vp = vp/B.

book). At the critical point s = 0, and at 7' = 0, we perform the g, integral, and then the frequency

integral to obtain

, A 2mupk\ P [ dQsgn(w + Q)
Y(iw) = —i 5 —=
3urV/3 g 2m  |Q[#
= —iBsgn(w)w|’® s=0,T=0, (95)
with 3
2 2
B 9 A ( WUQF/{) . (96)
27TUF\/§ g

It is instructive to examine the frequency and momentum dependence of the T" = 0 fermion
Green’s function across the Fermi surface. In the scaling limit, we can write the real frequency
axis Green’s function near the Fermi surface as

1

G(k,w) = . .
( ,QJ) _UFkr _ Iik};/Q + Z’Be—wrsgn(w)/3|w|2/3

(97)

As in the SYK model, we can drop the bare w term in G~! because it is subleading with respect
to the frequency-dependent self energy. Note also the distinction in the singularity structure from
that of the one-dimensional Tomonaga Luttinger liquid—the singularity here is entirely in the
frequency dependence of the self energy, as in the SYK model. We show a plot of —ImG in
Fig. 17. On the Fermi surface k, = 0, k, = 0 we have ImG' ~ —1/|w|*3, which is similar to the
ImG ~ —1/|w|'/? behavior of the SYK model. Unlike the Fermi liquid, there is no delta function

in w on the Fermi surface, indicating the absence of quasiparticles. Away from the Fermi surface,
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ImG actually vanishes on the Fermi surface (see Fig. 17), and there is a broad spectral feature
which disperses as w = [(2vp/(V3B))k,]?/?. Note that the position of the Fermi surface is still
given by the vanishing of the inverse Green’s function at zero frequency, as in (25).

We can compute the momentum distribution function of the electrons from (97), and it leads

to result similar in form to that of a Tomonaga-Luttinger liquid
n(k) ~ —sgu(vpk, + Kk} /2)|vpk, + /ikf,/Q\l/Q : (98)

with a power-law singularity on the Fermi surface. But recall that the frequency dependent form
of (97) is quite different from that for the one-dimensional electron gas.

At non-zero T, the SYK model displays simple w/T scaling in its spectral function. There are
‘quantum’ contributions which do indeed scale as w/T for the critical Fermi surface, but there are
also additional corrections which arise from classical thermal fluctuations of ¢ which are important.

So the T' > 0 situation is rather complex [32-35], as we noted above.

B. Luttinger relation

The strong damping and breakdown of quasiparticles implied by (95) and (96) nevertheless
does not remove the sharp Fermi surface. There is no singular momentum dependence in these
expressions, and the frequency dependence still obeys (24). Consequently, there is still a Fermi
surface specified by (25).

We now show that this Fermi surface obeys the same Luttinger relation as that of a Fermi
liquid. The argument proceeds just as in Section ID. The evaluation of (35) proceeds as before,
as the self energy all the needed properties. We only need to examine more carefully the fate of
the Luttinger-Ward term in (31):

2
/ / %Z—:G k,iw) d‘iz@'w)e-w. (99)
As the self energy of the critical Fermi surface is singular, it is possible that there is an anomalous
contribution at w = 0 that leads to a non-vanishing I,. However, that is not the case here because
the singularity of the Green’s function is much weaker as a result of its momentum dependence;

the low energy Green’s function is
. R .
Gk, iw) = —vpk, — §k§ — X(iw), (100)

and this diverges at w = 0 only on the Fermi surface vpk, + Rk; /2 = 0. Indeed, with this form,
the local density of states is a constant at the Fermi level. Consequently, there is no anomaly at
T =0, and I, = 0 from the Luttinger-Ward functional analysis. Incidentally, we note that the
Luttinger-Ward functional in the large N limit is just the first term in the action I in Eq. (81),
similar to the SYK model.
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To complete this discussion, we add a few remarks on the structure of the Luttinger-Ward
functional, and its connection to global U(1) symmetries [2, 3]. Consider the general case where
there are multiple Green’s functions (of bosons or fermions) G (ka,wa). Let the o’th particle have
a charge ¢, under a global U(1) symmetry. Then for each such U(1) symmetry, the Luttinger-Ward
functional will obey the identity

Prw [Ga(ka, wa)] = Prw [Ga(Ka, Wa + ¢af2)] - (101)

Here, we are regarding @y as functional of two distinct sets of functions fi 24 (we ), with fiq(we) =
Go(ka,wa + 4a82) and foo(w) = Galka,wa), and Pry evaluates to the same value for these two
sets of functions. Expanding (101) to first order in 2, and integrating by parts, we establish the

corresponding I = 0.

C. Transport

The highly singular self energy in (95) suggests that there will be strong scattering of charge
carriers, and hence a low T resistivity which is larger than the ~ T? resistivity of a Fermi liquid.
Indeed, it was argued in an early work [36] that the resistivity ~ 7°%/3; this is weaker than 3 ~ 7%/3,
because of the (1 — cos(#)) factor in the transport scattering time, for scattering by an angle 6,
and the dominance of forward scattering.

However, this argument ignores the strong constraints placed by momentum conservation [37—
41] in a theory of critical fluctuations which is described by a translationally invariant continuum
field theory. If we set up an initial state at ¢ = 0 with a non-zero current, such a state necessarily
has a non-zero momentum, which will remain the same for ¢ > 0. The current will decay to a
non-zero value which maximizes the entropy subject to the constraint of a non-zero momentum.
This non-zero current as t — oo implies that the d.c. conductivity is actually infinite. These
considerations are similar to those of ‘phonon drag’ [42, 43| leading to the absence of resistivity
from electron-phonon scattering. In practice, phonon drag is observed only in very clean sam-
ples [44], because otherwise the phonons rapidly lose their momentum to impurities. But the
electron-phonon coupling is weak, allowing for phonon-impurity interactions before there are mul-
tiple electron-phonon interactions. In contrast, for the critical Fermi surface, the fermion-boson
coupling is essentially infinite because it leads to the breakdown of electronic quasiparticles. So the
critical Fermi surface must be studied in the limit of strong drag, with vanishing d.c. resistivity
in the critical theory.

More remarkable and subtle is the fact that the non-Fermi liquid structure of (95) also does
not feed into the optical conductivity, which remains very similar to that of a Fermi liquid [45-50]
with the form:

1
o(w) ~ ot lw|® + -+ (w3 term has vanishing co-efficient) (102)
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FIG. 18. Diagrams for the conductivity for the theory L.+ L, + L.

There has been a claim [51] of a w™2/% contribution to the conductivity, but its co-efficient vanishes
after evaluation of all the graphs in Fig. 18 [48, 49]. This cancellation can be understood as a
consequence of Kohn’s theorem [52], which states that in a Galilean-invariant system only the first
term of the right-hand-side of (102) is non-zero. A Galilean-invariant system is not considered

~2/3 term arise from long-wavelength processes in the

here, but all contributions to the possible w
vicinity of patches of the Fermi surface, and these patches can be embedded in a system which is

Galilean-invariant also at higher energies.

VIII. UNIVERSAL THEORY OF STRANGE METALS: THE 2d-YSYK MODEL

See slides at https://sachdev.physics.harvard.edu/UQM24QCM.pdf.

Mechanisms extrinsic to the patch theory in Section VII A are required to relax the current and
obtain a finite d.c. conductivity. In a system with strong interactions, such processes are most
conveniently addressed by a ‘memory matrix’ approach that has been reviewed elsewhere [41]; this
approach also has close connections to holographic approaches [53, 54]. Various mechanisms have
been considered [38, 39, 55-58] involving spatial disorder or umklapp processes, and these do lead
to a singular resistivity at low 7. Here we focus on the results [48, 59, 60] obtained by including
spatial disorder in Yukawa coupling.

We will add spatial disorder to the theory of Ising ferromagnetism in Section III, as described
by the large N action in (76). We will not explicitly consider the models of quantum phase
transitions in metals in Sections [V and V. The three cases in Sections 11, [V, and V lead to distinct
universality classes of quantum phase transitions in the clean limit. However, a remarkable fact
is that the universality classes become the same once spatial disorder is included. This happens
because: (i) the Fermi surface becomes ‘fuzzy’ because of elastic scattering, and constraints from

momentum conservation become unimportant at distances larger than the fermion mean-free path,
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and (i) the boson propagator has the diffusive form in (105) in all three cases.

The most important source of spatial disorder in the theory of disordered Fermi liquids is
potential scattering, and so it is natural to include that here in the present theory. A form
amenable to the large N limit being described here is the random potential action, which we add
to the action in (76)

N
S, = \/LN a%;/d%ah vag(r)wlé(r, T)g(r, T)
Vap(r) =0, ) g(r)vys(r') = 02 6(1 — 7")6ar 055 (103)

The solution of the corresponding large N saddle point equations shows [59] that the boson polar-
izibility in (92) is replaced by

11(q, i g
(q,ZQn) ~ _E|Qn|7 (104)

which leads to z = 2 behavior in the boson propagator, with
[D(q,12)]7" ~ ¢ + |- (105)

The corresponding fermion self energy is modified from (95): it a familiar elastic impurity scattering
contribution ¥, also present in a disordered Fermi liquid, along with an inelastic term X, [48] with
the ‘marginal Fermi liquid’ form [61]

2
Sy (iwn) ~ —ivsgn(wn),  Sliwn) ~ — L, In(1/|w,]) . (106)
v

Despite the promising singularity in 3,, (106) does not translate [48] into interesting behavior
in the transport: the scattering is mostly forward, and the resistivity is Fermi liquid-like with
p(T) = p(0) + AT>.

Much more interesting and appealing behavior results when we add spatial randomness in
the Yukawa coupling. Such randomness will be generated by the potential randomness vag(x)
considered above, but it has to included at the outset in the large N limit. More explicitly, we
recall that the Yukawa coupling invariably arises from a Hubbard-Stratonovich decoupling of a
four-fermion interaction: we can decouple such an interaction via a ¢? term which is spatially
uniform, and then all the spatial disorder is transferred to the Yukawa term.

We can also view spatial disorder in the Yukawa coupling as a form of ‘Harris’ disorder i.e.
disorder in the local position of the quantum critical point. Such disorder is usually include as
a spatially random contribution ds(7) to the boson ‘mass’ s in (76). However, direct treatment
of 0s(r) by the present large N method leads to unphysical results. We have argued [59] that
random mass disorder should be treated exactly by rescaling ¢ so that the co-efficient of ¢? is
spatially independent. This rescaling induces spatial disorder in all other terms in (76), and the

most relevant is the one in the Yukawa coupling.
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So we add to the spatially independent Yukawa couplings g,z in (76) a second coupling g’am(r)

which has both spatial and flavor randomness with action

1
Sy = N/d%dT g;m(rwl(rp’T)wﬁ(r,7)¢7(r,7) (107)

glaﬁ'y<’r) = 07 g/ZB»Y(T)gng(T/) = gl2 (5(7‘ - 7‘/)(5&5(5[3[,(570 :

The complete action of the 2d-YSYK model is given by the sum of (76), (103), and (107). Then

we obtain additional contributions to the boson and fermion self energies [59]
I, (q,i) ~ —¢%|, Ty (iw,) ~ —ig?w, In(1/|w,]) . (108)

Now the marginal Fermi liquid self energy does contribute significantly to transport [59], with
a linear-T resistivity ~ ¢"2T, while the residual resistivity is determined primarily by v. It is
notable that it is the disorder in the interactions, v, which determines the slope of the linear-T
resistivity, while it is the potential scattering disorder which determines the residual resistivity.
Other attractive features of this theory are that it has an anomalous optical conductivity o(w)
with Re[l/o(w)] ~w and a T'In(1/T) specific heat [59, 60].
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